Answer:
velocity = 1527.52 ft/s
Acceleration = 80.13 ft/s²
Explanation:
We are given;
Radius of rotation; r = 32,700 ft
Radial acceleration; a_r = r¨ = 85 ft/s²
Angular velocity; ω = θ˙˙ = 0.019 rad/s
Also, angle θ reaches 66°
So, velocity of the rocket for the given position will be;
v = rθ˙˙/cos θ
so, v = 32700 × 0.019/ cos 66
v = 1527.52 ft/s
Acceleration is given by the formula ;
a = a_r/sinθ
For the given position,
a_r = r¨ - r(θ˙˙)²
Thus,
a = (r¨ - r(θ˙˙)²)/sinθ
Plugging in the relevant values, we obtain;
a = (85 - 32700(0.019)²)/sin66
a = (85 - 11.8047)/0.9135
a = 80.13 ft/s²
Answer:
A, the energy an object has due to its motion.
Explanation:
Kinetic energy is the energy created by motion.
<span>The answer here is positive space. Within a composition, any given object occupies positive space, whereas white space around this, or simply areas of blank space that are not being somehow used, is defined as negative space. Hopefully this clears up your question!</span>
Answer: gravitational potential energy is converted into kinetic energy
Explanation:
When the diver stands on the platform, at 20 m above the surface of the water, he has some gravitational potential energy, which is given by
![E=mgh](https://tex.z-dn.net/?f=E%3Dmgh)
where m is the man's mass, g is the gravitational acceleration and h is the height above the water. As he jumps, the gravitational potential energy starts decreasing, because its height h above the water decreases, and he acquires kinetic energy, which is given by
![K=\frac{1}{2}mv^2](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2)
where v is the speed of the diver, which is increasing. When he touches the water, all the initial gravitational potential energy has been converted into kinetic energy.
You can download the answer here
bit.
ly/3a8Nt8n