Answer:
(a) Current flowing through truck battery is 180 A
(b) Time taken in calculator is 333.33 s
Explanation:
(a) Given:
The charge on the truck battery,q = 720 C
Time, t = 4.00 s
Consider I be the current flowing through truck battery.
The relation between current, charge and time is:
I = q/t
Substitute the suitable values in the above equation.

I = 180 A
(b) Given:
The charge on the calculator,q = 7.00 C
The current flowing through calculator, I = 0.3 mA = 0.3 x 10⁻³ A
Consider t be the time.
The relation between current, charge and time is:
t = q/I
Substitute the suitable values in the above equation.

I = 333.33 s
We assume that the gas is an ideal gas so we can use the relation PV=nRT. Assuming that the temperature of the system is at ambient temperature, T = 298 K. We can calculate as follows:
PV = nRT
P = nRT / V
P = (0.801 mol ) (0.08205 L-atm / mol-K) (298.15 K) / 12 L
P = 1.633 atm
If there are two bulbs in series, and each bulb has
resistance = 3 ohms,
then their total resistance in series is 6 ohms.
When the series pair of bulbs is connected across the terminals
of the battery, the current through the circuit is
Current = (voltage) / (resistance)
= (12 volts) / (6 ohms) = 2 amperes
The distance from the base of the building the rock will land is 26.4 m
<h3>Data obtained from the question </h3>
- Horizontal velocity (u) = 20 m/s
- Height (h) = 8.50 m
- Distance (s) =?
<h3>Determination of the time to reach the ground </h3>
- Height (h) = 8.50 m
- Acceleration due to gravity (g) = 9.8 m/s²
- Time (t) =?
h = ½gt²
8.5 = ½ × 9.8 × t²
8.5 = 4.9 × t²
Divide both side by 4.9
t² = 8.5 / 4.9
Take the square root of both side
t = √(8.5 / 4.9)
t = 1.32 s
<h3>How to determine the distance </h3>
- Horizontal velocity (u) = 20 m/s
- Time (t) = 1.32 s
- Distance (s) =?
s = ut
s = 20 × 1.32
s = 26.4 m
Learn more about motion under gravity:
brainly.com/question/22719691