Chemical equation of the reaction between citric acid and baking soda:

Ratios
Citric Acid Baking soda -> Sodium Citrate Water Carbon Dioxide
C6H8O7 CO2
1 mole 3moles
Molecular masses
Citric acid
6*12 + 8*1 + 7*16 = 192 g/mole
Carbon dioxide
12 + 2*16 = 44 g/mole
Proportion carbon dioxide / citric acid
3 * 44 g of carbon dioxide / 192 g of citric acid
132 g of carbon dioxide / 192 g of citric acid
13.00 g of citric acid * [132 g of carbon dioxide / 192 g of citric acid] = 8.94 g of carbon dioxide.
Answer: 8.94 grams.
To solve this problem, we should recall that
the change in enthalpy is calculated by subtracting the total enthalpy of the reactants
from the total enthalpy of the products:
ΔH = Total H of products – Total H of reactants
You did not insert the table in this problem, therefore I
will find other sources to find for the enthalpies of each compound.
ΔHf CO2 (g) = -393.5 kJ/mol
ΔHf CO (g) = -110.5 kJ/mol
ΔHf Fe2O3 (s) = -822.1 kJ/mol
ΔHf Fe(s) = 0.0 kJ/mol
Since the given enthalpies are still in kJ/mol, we have to
multiply that with the number of moles in the formula. Therefore solving for ΔH:
ΔH = [<span>3 mol </span><span>( − </span><span>393.5 </span>kJ/mol<span>) + 1 mol (</span>0.0
kJ/mol)<span>] − [</span><span>3 mol </span><span>( − </span><span>110.5 </span>kJ/mol<span>) + </span><span>2 mol </span><span>( − </span><span>822.1 </span>kJ/mol<span>)]</span>
ΔH = <span>795.2
kJ</span>
Sulfur and sodium are those two elements
The gas is NH₃.
H₂ doesn't dissolve readily in water, SO₂ gives an acidic solution in water.
The solid residue is Fe(OH)₂.
FeSO₄ and Na₂SO₄ are soluble in water.
The answer is C.
Answer:
See below
Explanation:
Molecular formula ( just write down all of the elements ) C 4 H4 O4
Empiracle formual CHO
"Molecular formulas tell you how many atoms of each element are in a compound, and empirical formulas tell you the simplest or most reduced ratio of elements in a compound"