1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelechka [254]
2 years ago
12

If the force of attraction (gravity) on the moon is 1/6 that of the force on Earth, what would

Physics
1 answer:
Aloiza [94]2 years ago
4 0

I believe that you would weigh around 68 or 69 N, or 7 kilograms.

You might be interested in
Work done by a gravitational force by lowering the bucket into the well is
katovenus [111]

Answer:

when we lower a bucket into a well to fetch water, the work done by gravity is positive since force and displacement are in the same direction.

Explanation:

3 0
3 years ago
For a damped simple harmonic oscillator, the block has a mass of 1.2 kg and the spring constant is 9.8 N/m. The damping force is
ArbitrLikvidat [17]

Answer:

a) t=24s

b) number of oscillations= 11

Explanation:

In case of a damped simple harmonic oscillator the equation of motion is

m(d²x/dt²)+b(dx/dt)+kx=0

Therefore on solving the above differential equation we get,

x(t)=A₀e^{\frac{-bt}{2m}}cos(w't+\phi)=A(t)cos(w't+\phi)

where A(t)=A₀e^{\frac{-bt}{2m}}

 A₀ is the amplitude at t=0 and

w' is the angular frequency of damped SHM, which is given by,

w'=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}} }

Now coming to the problem,

Given: m=1.2 kg

           k=9.8 N/m

           b=210 g/s= 0.21 kg/s

           A₀=13 cm

a) A(t)=A₀/8

⇒A₀e^{\frac{-bt}{2m}} =A₀/8

⇒e^{\frac{bt}{2m}}=8

applying logarithm on both sides

⇒\frac{bt}{2m}=ln(8)

⇒t=\frac{2m*ln(8)}{b}

substituting the values

t=\frac{2*1.2*ln(8)}{0.21}=24s(approx)

b) w'=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}} }

w'=\sqrt{\frac{9.8}{1.2}-\frac{0.21^{2}}{4*1.2^{2}}}=2.86s^{-1}

T'=\frac{2\pi}{w'}, where T' is time period of damped SHM

⇒T'=\frac{2\pi}{2.86}=2.2s

let n be number of oscillations made

then, nT'=t

⇒n=\frac{24}{2.2}=11(approx)

8 0
3 years ago
) each plate of a parallel-plate air-filled capacitor has an area of 0.0020 , and the separation of the plates is an electric fi
Dvinal [7]
I attached the full question.
We know that for a parallel-plate capacitor the surface charge density is given by the following formula:
\sigma=\varepsilon_0 \frac{V}{d}
Where V is the voltage between the plates and d is separation.
Voltage is by definition:
V=Ed
Voltage is analog to the mechanical work done by the force.
Above formula is correct only If the field is constant, and we can assume that it is since no function has been given.
The charge density would then be:
\sigma=\varepsilon_0 \frac{Ed}{d}=\varepsilon_0E\\
\sigma= 8.85\cdot10^{-12}\cdot 2.1\cdot 10^6= 0.0000185\frac{c}{m^2}
Please note that elecric permittivity of air is very close to  elecric permittivity of vacum, it is common to use them <span>interchangeably</span>.

6 0
3 years ago
This problem has been solved!
lana66690 [7]

Answer:

Charge on each metal sphere will be 8\times 10^{8}C

Explanation:

We have given number of electron added to metal sphere A n=10^{12}electron

As both the spheres are connected by rod so half -half electron will be distributed on both the spheres.

So electron on both the spheres =\frac{10^{12}}{2}=5\times 10^{11}electron

We know that charge on each electron e=1.6\times 10^{-19}C

So charge on both the spheres will be equal to q=1.6\times 10^{-19}\times 5\times 10^{11}=8\times 10^{8}C

So charge on each metal sphere will be equal to 8\times 10^{8}C

6 0
2 years ago
A projectile is fired from the ground at a velocity of 30.0 m/s, 35.0 º from the horizontal. What is the maximum height the proj
Norma-Jean [14]

Answer:

Vy = V sin theta = 30 * ,574 = 17.2 m/s

t1 = 17.2 / 9.8 = 1.76 sec to reach max height

Max height = 17.2 * 1.76 - 1/2 * 4.9 * 1.76^2 = 15.1 m

H = V t - 1/2 g t^2 = 1.2 * 9.8 * 1.76^2 = 15.1 m

Time to fall from zero speed to ground = rise time = 1.76 sec

Vx = V cos 35 = 24.6 m / sec     horizontal speed

Time in air = 1.76 * 2 = 3.52 sec before returning to ground

S = 24.6 * 3.52 = 86.6 m

8 0
2 years ago
Other questions:
  • The unit light-year is a measure of
    9·2 answers
  • The graph shows how the vertical velocity of a parachutist changes from the moment the parachutist jumps from the aircraft until
    7·1 answer
  • True or False: Once the object hits the water, the forces are balanced and the object will stop. Support your answer with reason
    5·1 answer
  • An object is thrown straight up into the air at 10 m/s. how fast is the object traveling after 2 seconds?
    15·1 answer
  • Se dea caer una pelota de basquetbol desde una altura de 90 metros.Calcular: El tiempo en que demorara en caer y a velcidad con
    13·1 answer
  • A musical tone sounded on a pi has frequency of 410 Hz and a wavelength of 0.80 m.
    13·1 answer
  • according to the law of conservation of energy , energy is neither created nor destroyed , then from where electrons get their e
    5·1 answer
  • In the diagram below, a 10-kilogram ball is fired with a
    11·1 answer
  • Two ropes are attached to either side of a 100.0 kg wagon as shown below. The rope on the right is pulled at an angle 40.0° rela
    9·1 answer
  • the system shown above is released from rest. if friction is negligible, the acceleration of the 4.0 kg block sliding on the tab
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!