Answer:
when we lower a bucket into a well to fetch water, the work done by gravity is positive since force and displacement are in the same direction.
Explanation:
Answer:
a) t=24s
b) number of oscillations= 11
Explanation:
In case of a damped simple harmonic oscillator the equation of motion is
m(d²x/dt²)+b(dx/dt)+kx=0
Therefore on solving the above differential equation we get,
x(t)=A₀
where A(t)=A₀
A₀ is the amplitude at t=0 and
is the angular frequency of damped SHM, which is given by,

Now coming to the problem,
Given: m=1.2 kg
k=9.8 N/m
b=210 g/s= 0.21 kg/s
A₀=13 cm
a) A(t)=A₀/8
⇒A₀
=A₀/8
⇒
applying logarithm on both sides
⇒
⇒
substituting the values

b) 

, where
is time period of damped SHM
⇒
let
be number of oscillations made
then, 
⇒
I attached the full question.
We know that for a parallel-plate capacitor the surface charge density is given by the following formula:

Where V is the voltage between the plates and d is separation.
Voltage is by definition:

Voltage is analog to the mechanical work done by the force.
Above formula is correct only If the field is constant, and we can assume that it is since no function has been given.
The charge density would then be:

Please note that elecric permittivity of air is very close to elecric permittivity of vacum, it is common to use them <span>interchangeably</span>.
Answer:
Charge on each metal sphere will be 
Explanation:
We have given number of electron added to metal sphere A 
As both the spheres are connected by rod so half -half electron will be distributed on both the spheres.
So electron on both the spheres 
We know that charge on each electron 
So charge on both the spheres will be equal to 
So charge on each metal sphere will be equal to 
Answer:
Vy = V sin theta = 30 * ,574 = 17.2 m/s
t1 = 17.2 / 9.8 = 1.76 sec to reach max height
Max height = 17.2 * 1.76 - 1/2 * 4.9 * 1.76^2 = 15.1 m
H = V t - 1/2 g t^2 = 1.2 * 9.8 * 1.76^2 = 15.1 m
Time to fall from zero speed to ground = rise time = 1.76 sec
Vx = V cos 35 = 24.6 m / sec horizontal speed
Time in air = 1.76 * 2 = 3.52 sec before returning to ground
S = 24.6 * 3.52 = 86.6 m