1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
14

Where do greywater pipes generally feed into?

Engineering
1 answer:
Mekhanik [1.2K]3 years ago
7 0

Answer:

c   Waste stack

Explanation:

You might be interested in
Which one is suitable for industries petrol engine or diesel engine and why?
klio [65]

Answer:

diesel engine

Explanation:

because diesel is stronger than petrol

3 0
3 years ago
Read 2 more answers
In which situation is a are food service workers not required to wash their hands?
Margarita [4]

Answer:

when wearing gloves?

Explanation:

?

or when off duty

3 0
3 years ago
Read 2 more answers
Ti-6Al-4V has a fracture toughness of 74.6 MPa-m0.5. How much stress (in MPa) would it take to fail a plate loaded in tension th
Nikitich [7]

Answer:

critical stress  = 595 MPa

Explanation:

given data

fracture toughness =  74.6 MPa-\sqrt{m}

crack length = 10 mm

f = 1

solution

we know crack length = 10 mm  

and crack length = 2a as given in figure attach

so 2a = 10

a = 5 mm

and now we get here with the help of plane strain condition , critical stress is express as

critical stress  = \frac{k}{f\sqrt{\pi a}}    ......................1

put here value and we get

critical stress  = \frac{74.6}{1\sqrt{\pi 5\times 10^{-3}}}

critical stress  = 595 MPa

so here stress is change by plane strain condition because when plate become thinner than condition change by plane strain to plain stress.

plain stress condition occur in thin body where stress through thickness not vary by the thinner section.

6 0
3 years ago
A wood pole with a diameter of 10 in. has a moisture content of 5%. The fiber saturation point (FSP) for this wood is 30%. The w
Mekhanik [1.2K]

Answer:

a) Δd(change in wood diameter) = 5%

b) The wood would swell since the moisture content is increasing which will also led to increase in the wood's diameter

C) new diameter (D2) = 10.5 in

Explanation:

Wood pole diameter = 10 inches

moisture content = 5%

FSP = 30%

A) The percentage change in the wood's diameter

note : moisture fluctuations from 5% to 30% causes dimensional changes in the wood but above 30% up to 55% causes no change. hence this formula can be used to calculate percentage change in the wood's diameter

Δd/d = 1/5(30 - 5)

Δd/d = 5%  

Δd = 5%

B) would the wood swell or shrink

The wood would swell since the moisture content is increasing which will also led to increase in the wood's diameter

C) The new diameter of the wood

D2 = D + D( \frac{M1}{100} )

D = initial diameter= 10 in , M1 = initial moisture content = 5%

therefore D2 = 10 + 10( 5/100 )

new diameter (D2) = 10.5 in

5 0
3 years ago
A 50 mm diameter shaft is subjected to a static axial load of 160 kN. If the yield stress of the material is 350 MPa, the ultima
zvonat [6]

In order to develop this problem it is necessary to take into account the concepts related to fatigue and compression effort and Goodman equation, i.e, an equation that can be used to quantify the interaction of mean and alternating stresses on the fatigue life of a materia.

With the given data we can proceed to calculate the compression stress:

\sigma_c = \frac{P}{A}

\sigma_c = \frac{160*10^3}{\pi/4*0.05^2}

\sigma_c = 81.5MPa

Through Goodman's equations the combined effort by fatigue and compression is expressed as:

\frac{\sigma_a}{S_e}+\frac{\sigma_c}{\sigma_u}=\frac{1}{Fs}

Where,

\sigma_a=Fatigue limit for comined alternating and mean stress

S_e =Fatigue Limit

\sigma_c=Mean stress (due to static load)

\sigma_u = Ultimate tensile stress

Fs =Security Factor

We can replace the values and assume a security factor of 1, then

\frac{\sigma_a}{320}+\frac{81.5}{400}=\frac{1}{1}

Re-arrenge for \sigma_a

\sigma_a = 254.8Mpa

We know that the stress is representing as,

\sigma_a = \frac{M_c}{I}

Then,

Where M_c=Max Moment

I= Intertia

The inertia for this object is

I=\frac{\pi d^4}{64}

Then replacing and re-arrenge for M_c

M_c = \frac{\sigma_a*\pi*d^3}{32}

M_c = \frac{260.9*10^6*\pi*0.05^3}{32}

M_c = 3201.7N.m

Thereforethe moment that can be applied to this shaft so that fatigue does not occur is 3.2kNm

5 0
3 years ago
Other questions:
  • A computer has a two-level cache. Suppose that 60% of the memory references hit on the first level cache, 35% hit on the second
    12·1 answer
  • 1- A square-wave inverter has a dc source of 96 V and an output frequency of 60 Hz. The load is a series RL load with R = 5 Ohm
    7·1 answer
  • Consider five wireless stations A,B,C,D,E. Station
    5·2 answers
  • A 220-V electric heater has two heating coils that can be switched such that either coil can be used independently or the two ca
    15·1 answer
  • A digital Filter is defined by the following difference equation:
    11·1 answer
  • Unitate de masura in SI pt F​
    11·1 answer
  • What effect does air have on the acceleration of aircraft during flight?
    5·1 answer
  • During a load test, a battery's voltage drops below a specific value. what action should the technician take?
    15·1 answer
  • There are three different types of slings. What determines which type you use?
    13·1 answer
  • 10. True or False? A disruptive technology<br> radically changes the way people live and<br> work.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!