Correct one is b
Good luck
Answer:
Option B
Explanation:
Option A is the wrong answer because the horizontal vector is in the opposite direction.
Option C is the wrong answer as the horizontal vector is in the opposite direction and all the vectors are connected head to tail [of the arrows] [Triangle law of vector addition]
Option D is the wrong answer as the horizontal vector is in the opposite direction.
Answer:
Straight line in the direction of the tangential velocity the ball had at the moment the string broke
Explanation:
After the string breaks, the ball now disconnected from the centripetal force that was exerted via the string, continues its travel in a straight line in the direction of the tangential velocity it had at the moment the string broke.
Answer:
the force of attraction between all masses in the universe; especially the attraction of the earth's mass for bodies near its surface
Explanation:
The equation for the resistance R is: R=ρ*(l/A), where, ρ is electrical resistivity, l is the length of the conductor, and A is the surface area.
The initial surface area is:
A=r²π, then when we double the radius we get:
A₁=(2*r)²π=4*r²π=4*A
Initial resistance is: R=ρ*(l/A).
When we double the radius, resistance is: R₁=ρ*{ l / (4*A) }
The ratio of the new resistance to the old one:
R₁/R=[ρ*(l/A)] / [ ρ* { l / (4*A) } ] = ρ, l and A cancel out and we get:
R₁/R=(1/1)/(1/4)=4/1