Answer:
Explanation:
Initial angular velocity ω₁ = 0 , final angular velocity ω₂ = 75.9 rad /s
angle rotated = θ
= 37 x 2π
= 74 π
The formula for angular velocity
ω₂² = ω₁² + 2αθ , α is angular acceleration
75.9² = 0 + 2 α x 74 π
α = 75.9² / 2 x 74 π
= 12.396 rad / s²
Answer:
The frictional force
6.446 N
The acceleration of the block a = 6.04 
Explanation:
Mass of the block = 3.9 kg
°
= 0.22
(a). The frictional force is given by


3.9 × 9.81 × 
29.3 N
Therefore the frictional force
0.22 × 29.3
6.446 N
(b). Block acceleration is given by

F = 30 N
= 6.446 N
= 30 - 6.446
= 23.554 N
The net force acting on the block is given by

23.554 = 3.9 × a
a = 6.04 
This is the acceleration of the block.
Atomic disguise makes helium look like hydrogen. ... A helium atom consists of a nucleus containing two positively charged protons and two neutrons, encircled by two orbiting electrons which carry a negative charge. A hydrogen atom has just one proton and one electron
Density offers a convenient means of obtaining the mass of a body from its volume or vice versa; the mass is equal to the volume multiplied by the density (M = Vd), while the volume is equal to the mass divided by the density (V = M/d).
M = V d
M = 1.4 * 2 = 2.8 kg
Answer:
The answer is
<h2>28 kg</h2>
Explanation:
The mass of an object given it's momentum and velocity / speed can be found by using the formula

where
m is the mass
p is the momentum
v is the speed or velocity
From the question
p = 280 kg/ms
v = 10 m/s
The mass of the object is

We have the final answer as
<h3>28 kg</h3>
Hope this helps you