1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
3 years ago
15

Justin depends 600watts if power pushing a car 10m in 5sec how much force did he exert

Physics
1 answer:
Natasha_Volkova [10]3 years ago
5 0

Force exerted by Justin=300 N

Here power= 600 W

distance traveled=10 m

time=5 s

power is given by P= Work done/ time

600=work/5

so work= 60x5=3000J

now work done= force* distance

3000=F *10

F= 3000/10

F=300 N

You might be interested in
the SI and CGS unit of force are newton and dyne respectively haow many dynes are equal to one newton​
Triss [41]

Answer:

For example, the CGS unit of force is the dyne, which is defined as 1 g⋅cm/s2, so the SI unit of force, the newton (1 kg⋅m/s2), is equal to 100000 dynes.

Explanation:

5 0
2 years ago
The British gold sovereign coin is an alloy of gold and copper having a total mass of 7.988 g, and is 22-karat gold 24 x (mass o
matrenka [14]

Answers:

(a) 0.0073kg

(b) Volume gold: 3.79(10)^{-7}m^{3}, Volume cupper: 7.6(10)^{-8}m^{3}

(c) 17633.554kg/m^{3}

Explanation:

<h2>(a) Mass of gold </h2><h2 />

We are told the total mass M of the coin, which is an alloy  of gold and copper is:

M=m_{gold}+m_{copper}=7.988g=0.007988kg   (1)

Where  m_{gold} is the mass of gold and m_{copper} is the mass of copper.

In addition we know it is a 22-karat gold and the relation between the number of karats K and mass is:

K=24\frac{m_{gold}}{M}   (2)

Finding {m_{gold}:

m_{gold}=\frac{22}{24}M   (3)

m_{gold}=\frac{22}{24}(0.007988kg)   (4)

m_{gold}=0.0073kg   (5)  This is the mass of gold in the coin

<h2>(b) Volume of gold and cupper</h2><h2 />

The density \rho of an object is given by:

\rho=\frac{mass}{volume}

If we want to find the volume, this expression changes to: volume=\frac{mass}{\rho}

For gold, its volume V_{gold} will be a relation between its mass m_{gold}  (found in (5)) and its density \rho_{gold}=19.30g/cm^{3}=19300kg/m^{3}:

V_{gold}=\frac{m_{gold}}{\rho_{gold}}   (6)

V_{gold}=\frac{0.0073kg}{19300kg/m^{3}}   (7)

V_{gold}=3.79(10)^{-7}m^{3}   (8)  Volume of gold in the coin

For copper, its volume V_{copper} will be a relation between its mass m_{copper}  and its density \rho_{copper}=8.96g/cm^{3}=8960kg/m^{3}:

V_{copper}=\frac{m_{copper}}{\rho_{copper}}   (9)

The mass of copper can be found by isolating m_{copper} from (1):

M=m_{gold}+m_{copper}  

m_{copper}=M-m_{gold}  (10)

Knowing the mass of gold found in (5):

m_{copper}=0.007988kg-0.0073kg=0.000688kg  (11)

Now we can find the volume of copper:

V_{copper}=\frac{0.000688kg}{8960kg/m^{3}}   (12)

V_{copper}=7.6(10)^{-8}m^{3}   (13)  Volume of copper in the coin

<h2>(c) Density of the sovereign coin</h2><h2 />

Remembering density is a relation between mass and volume, in the case of the coin the density \rho_{coin will be a relation between its total mass M and its total volume V:

\rho_{coin}=\frac{M}{V} (14)

Knowing the total volume of the coin is:

V=V_{gold}+V_{copper}=3.79(10)^{-7}m^{3}+7.6(10)^{-8}m^{3}=4.53(10)^{-7}m^{3} (15)

\rho_{coin}=\frac{0.007988kg}{4.53(10)^{-7}m^{3}} (16)

Finally:

\rho_{coin}=17633.554kg/m^{3}} (17)  This is the total density of the British sovereign coin

6 0
3 years ago
Given the thermochemical equations X2+3Y2⟶2XY3ΔH1=−370 kJ X2+2Z2⟶2XZ2ΔH2=−120 kJ 2Y2+Z2⟶2Y2ZΔH3=−270 kJ Calculate the change in
Alchen [17]

Answer : The change in enthalpy of the reaction is, -310 kJ

According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.

According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.

The given main reaction is,

4XY_3+7Z_2\rightarrow 6Y_2Z+4XZ_2    \Delta H=?

The intermediate balanced chemical reaction will be,

(1) X_2+3Y_2\rightarrow 2XY_3     \Delta H_1=-370kJ

(2) X_2+2Z_2\rightarrow 2XZ_2    \Delta H_2=-120kJ

(3) 2Y_2+Z_2\rightarrow 2Y_2Z    \Delta H_3=-270kJ

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :

(1) 4XY_3\rightarrow 2X_2+6Y_2     \Delta H_1=2\times (+370kJ)=740kJ

(2) 2X_2+4Z_2\rightarrow 4XZ_2    \Delta H_2=2\times (-120kJ)=-240kJ

(3) 6Y_2+3Z_2\rightarrow 6Y_2Z    \Delta H_3=3\times (-270kJ)=-810kJ

The expression for enthalpy of formation of CH_4 will be,

\Delta H=\Delta H_1+\Delta H_2+\Delta H_3

\Delta H=(+740kJ)+(-240kJ)+(-810kJ)

\Delta H=-310kJ

Therefore, the change in enthalpy of the reaction is, -310 kJ

5 0
3 years ago
A jogger runs at a constant rate of 10.0 m every 2.0 seconds. The jogger starts at the origin and runs in the positive direction
Elis [28]

Answer:

(a) 25 m

(b) 75 m

Explanation:

Given that the jogger runs at a constant rate of 10.0 m every 2.0 seconds.

So, the speed of the jogger,

v=\frac{10}{2}=5m/s\;\cdots(i)

Let d be the distance covered by him in time, t s.

As distance=(speed) x (time)

So, d=vt

From equation (i)

\Rightarrow d=5t\;\cdots(ii)

As the jogger starts from origin, so, the distance, d, also represents the position of the jogger at the time t s.

The position-time graph has been shown.

(a) From equation (ii), for t=5.0 s

d=5\times 5=25 m

So, the jogger is at a distance of 25 m from the origin.

(b) Similarly, for t=15.0 s

d=5\times 15=75 m

So, the jogger is at a distance of 75 m from the origin.

8 0
2 years ago
How does the value of gravity vary as you go:
iragen [17]

Answer:

Gravity changes with altitude. as we know The gravitational force is proportional to 1/R2, where R is your distance from the center of the Earth.

eg. The radius of the Earth at the equator is 6400 kilometers.

Let's say you were in a jet at the equator that was 40 kilometers high above the earth's surface.

may be helpfull

6 0
1 year ago
Other questions:
  • Which characteristic of the gas giants decreases with increasing distance from the sun?
    12·2 answers
  • Is baking soda less dense or more dense than water?
    6·1 answer
  • A car travels 35 km west and 90 km north in two hours what is its average velocity?
    8·1 answer
  • Find the volume of a box measuring 2cm by 7 cm by 3cm
    11·2 answers
  • A pendulum in a grandfather clock oscillates back and forth twice in one second what is it’s period
    7·1 answer
  • What is the complete back-and-forth motion of an object called?
    15·1 answer
  • If I start driving 80 miles per hour down the interstate how far will I go if I Drive for 4.5 hours
    5·1 answer
  • Density is a chemical property of matter.<br> TRUE<br> FALSE
    15·2 answers
  • Given that the acceleration of gravity at the surface of Mars is 0.38 of what it is on Earth, and that Mars' radius is 3400 km,
    5·2 answers
  • 1 poi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!