Mass of sodium thiosulfate
is 110. g
Volume of the solution is 350. mL
Calculating the moles of sodium thiosulfate:
= 0.696 mol
Converting the volume of solution to L:

Finding out the concentration of solution in molarity:

Answer is: 127 grams <span>rams of metallic copper can be obtained.
</span>Balanced chemical reaction: 2Al + 3CuSO₄ → Al₂(SO₄)₃ + 3Cu.
m(Al) = 54.0 g.
n(Al) = m(Al) ÷ M(Al).
n(Al) = 54 g ÷ 27 g/mol.
n(Al) = 2 mol.
m(CuSO₄) = 319 g.
n(CuSO₄) = 319 g ÷ 159.6 g/mol.
n(CuSO₄) = 2 mol; limiting reactant.
From chemical reaction: n(CuSO₄) : n(Cu) = 3 : 3 (1 : 1).
n(Cu) = 2 mol.
n(Cu) = 2 mol · 63.55 g/mol.
n(Cu) = 127.1 g.
should be clear acid if im not mistaken
Answer: 0.8541 grams of HCl will be required.
Explanation: Moles can be calculated by using the formula:

Given mass of
= 0.610 g
Molar mass of
= 78 g/mol

Number of moles of
= 0.0078 moles
The reaction between
and HCl is a type of neutralization reaction because here acid and base are reacting to form an salt and also releases water.
Chemical equation for the above reaction follows:

By Stoichiometry,
1 mole of
reacts with 3 moles of HCl
So, 0.0078 moles of
will react with
= 0.0234 moles
Mass of HCl is calculated by using the mole formula, we get
Molar mass of HCl = 36.5 g/mol
Putting values in the equation, we get
Mass of HCl required will be = 0.8541 grams
Answer: The value of
for this reaction is 250000.
Explanation:
The given equation is as follows.

... (1)
... (2)
To balance the atoms, multiply equation (2) by 3. Hence, the equation (2) can be re-written as follows.
... (3)
Now, subtract equation (1) from equation (3). So, the equation formed will be as follows.

This equation can also be re-written as follows.

This equation is similar to the equilibrium equation given to us.
Therefore, during this subtraction the equation constants get divided as follows.
Thus, we can conclude that the value of
for this reaction is 250000.