Answer:
The system can be described by a convolution
Explanation:
Thinking process:
If we consider a discrete input to a linear time-invariant system, then the system will be periodic with respect to the period, say N. This therefore, means that the output must also be periodic. The proof is as follows:
The LTI system can be written for the system where:
y (n+N) = ∑
= ∑
From the proof, it turns out that y(y + N) = y(n) for any value of n, then the output will be the periodic with the period N.
Answer:

Explanation:
By an adequate application of the Principle of Energy Conservation, the escalator need energy to elevate from to the bottom to the top. Hence:

An expression for power needed is found by deriving the equation with respect to time:

The minimum power is found by substituting known inputs:


Answer:
a) The rate at which the cube emits radiation energy is 704.48 W
b) The spectral blackbody emissive power is 194.27 W/m²μm
Explanation:
Given data:
a = side of the cube = 0.2 m
T = temperature = 477°C
Wavelength = 4 µm
a) The surface area is:

According Stefan-Boltzman law, the rate of emission is:

b) Using Plank´s distribution law to get the spectral blackbody emissive power.

Answer:
Digital electronics deals with the discrete-valued digital signals. In general, any electronic system based on the digital logic uses binary notation (zeros and ones) to represent the states of the variables involved in it. Thus, Boolean algebraic simplification is an integral part of the design and analysis of a digital electronic system.
Explanation:
Hi please follow me also I you can and thanks for the points. Have a good day.