There are one antibonding molecular orbitals present in molecular orbital model of c.
The cyclobutadiene has a pi system comprised of four individual atomic p - orbital and thus should have a four pi molecular orbitals. The compound is the prototypical antiaromatic hydrocarbon with 4
- electrons . Its rectangular structure is the result of jahn teller reaction which disorder the molecule and lowers its symmetry , converting the triplet to a singlet ground state. It is a small annulene . The delocalisation energy of the
electrons of the cyclobutene is predicted to be zero .
To learn more about antibonding molecular orbitals click here
brainly.com/question/14970060
#SPJ4
The energy release when dissolving 1 mol of NaOH in water is 445.1 kJ
the mass of NaOH to be dissolved is 32.0 g
The number of NaOH moles in 32.0 g - 32.0 g / 40 g/mol = 0.8 mol
the energy released whilst dissolving 1 mol of NaOH - 445.1 kJ
when dissolving 0.8 mol - the energy released is 445.1 kJ/mol x 0.8 mol
therefore heat released is - 356.08 kJ
answer is -356.08 kJ
Answer:
5 × 10^-4 L
Explanation:
The equation of the reaction is;
2KClO3 = 2KCl + 3O2
Number of moles of KClO3 = 13.5g/122.5 g / mol = 0.11 moles
From the stoichiometry of the reaction;
2 moles of KClO3 yields 3 moles of O2
0.11 moles of KClO3 yields 0.11 × 3/2 = 0.165 moles of oxygen gas
From the ideal gas equation;
PV= nRT
P= 85.4 × 10^4 KPa
V=?
n= 0.165
R= 8.314 J K-1 mol-1
T= 40+273 = 313K
V= 0.165 ×8.134 × 313/85.4 × 10^4
V=429.4/85.4 × 10^4
V= 5 × 10^-4 L
Explanation:
2H2O2 => 2H2O + O2
Moles of hydrogen peroxide = 0.150dm³ * (0.02mol/dm³) = 0.003mol .
Moles of oxygen = 0.0015mol.
Volume of oxygen = 0.0015mol * (22.4dm³/mol) = 0.0336dm³.
Explanation:
1. Thermochemical equation is balance stoichiometric chemical equation written with the phases of the reactants and products in the brackets along with the enthalpy change of the reaction.
The given correct thermochemical reactions are:


2. Phase change affect the value of the enthalpy change of the thermochemical equation. This is because change in phase is accompanied by change in energy. For example:


In both reaction phase of water is changing with change in energy of enthalpy of reaction.