<span>The answer is 2:3. Because the lowest common denominator of 2 and 3 is 6, we find that for every 2 Fe3+ ions, we would need 3 O2- ions to neutralize the charge. The other answers do not fit this idea, as the math doesn't then add up to come to a neutral charge.</span>
The mass number of ³⁵Cl and ³⁷Cl is 35 and respectively.
<h3>What is atomic mass? </h3>
Atomic mass is defined as the sum of number of protons and number of neutrons of an element.
Atomic mass is represented by A.
<h3>What is Atomic number?</h3>
Atomic number is defined as the number of electron in an element.
Atomic number is represented by Z.
<h3>What is Isotopes? </h3>
Isotopes are the element which have same atomic number but have different atomic mass.
Number of proton is equal to number of electrons.
Proton is positively charged, electrons are negativity charge while neutrons are neutral in nature.
Proton and neutrons are present in the nucleus of an element. On the other hand, electron revolves around the nucleus.
The atomic number of ³⁵Cl and ³⁷Cl is 17.
Number of protons = Number of electrons = 18.
Neutrons = atomic mass - atomic number
Neutrons of ³⁵Cl = 35-17 = 18
Neutrons of ³⁷Cl= 37- 17= 20
So, they have different atomic mass and number of neutrons.
Thus, we concluded that the mass number of ³⁵Cl and ³⁷Cl is 35 and 37 respectively.
learn more about atomic mass:
brainly.com/question/14250653
#SPJ4
The first thing you will need to do is find some information about your element. Go to the Periodic Table of Elements and click on your element. If it makes things easier, you can select your element from an alphabetical listing.
Use the Table of Elements to find your element's atomic number and atomic weight. The atomic number is the number located in the upper left corner and the atomic weight is the number located on the bottom, as in this example for krypton:
Krypton's data from the Table of Elements
Step 2 - The Number of Protons is...
The atomic number is the number of protons in an atom of an element. In our example, krypton's atomic number is 36. This tells us that an atom of krypton has 36 protons in its nucleus.
The interesting thing here is that every atom of krypton contains 36 protons. If an atom doesn't have 36 protons, it can't be an atom of krypton. Adding or removing protons from the nucleus of an atom creates a different element. For example, removing one proton from an atom of krypton creates an atom of bromine.
Step 3 - The Number of Electrons is...
By definition, atoms have no overall electrical charge. That means that there must be a balance between the positively charged protons and the negatively charged electrons. Atoms must have equal numbers of protons and electrons. In our example, an atom of krypton must contain 36 electrons since it contains 36 protons.
Electrons are arranged around atoms in a special way. If you need to know how the electrons are arranged around an atom, take a look at the 'How do I read an electron configuration table?' page.
An atom can gain or lose electrons, becoming what is known as an ion. An ion is nothing more than an electrically charged atom. Adding or removing electrons from an atom does not change which element it is, just its net charge.
For example, removing an electron from an atom of krypton forms a krypton ion, which is usually written as Kr+. The plus sign means that this is a positively charged ion. It is positively charged because a negatively charged electron was removed from the atom. The 35 remaining electrons were outnumbered by the 36 positively charged protons, resulting in a charge of +1.
Step 4 - The Number of Neutrons is...
The atomic weight is basically a measurement of the total number of particles in an atom's nucleus. In reality, it isn't that clean cut. The atomic weight is actually a weighted average of all of the naturally occurring isotopes of an element relative to the mass of carbon-12. Didn't understand that? Doesn't matter. All you really need to find is something called the mass number. Unfortunately, the mass number isn't listed on the Table of Elements. Happily, to find the mass number, all you need to do is round the atomic weight to the nearest whole number. In our example, krypton's mass number is 84 since its atomic weight, 83.80, rounds up to 84.
The mass number is a count of the number of particles in an atom's nucleus. Remember that the nucleus is made up of protons and neutrons. So, if we want, we can write:
Mass Number = (Number of Protons) + (Number of Neutrons)
For krypton, this equation becomes:
84 = (Number of Protons) + (Number of Neutrons)
If we only knew how many protons krypton has, we could figure out how many neutrons it has. Wait a minute... We do know how many protons krypton has! We did that back in Step 2! The atomic number (36) is the number of protons in krypton. Putting this into the equation, we get:
84 = 36 + (Number of Neutrons)
What number added to 36 makes 84? Hopefully, you said 48. That is the number of neutrons in an atom of krypton.
The interesting thing here is that adding or removing neutrons from an atom does not create a different element. Rather, it creates a heavier or lighter version of that element. These different versions are called isotopes and most elements are actually a mixture of different isotopes.
If you could grab atoms of krypton and count the number of neutrons each one had, you would find that most would have 48, others would have 47, some would have 50, some others would have 46, a few would have 44 and a very few would have 42. You would count different numbers of neutrons because krypton is a mixture of six isotopes.
In Summary...
For any element:
Number of Protons = Atomic Number
Number of Electrons = Number of Protons = Atomic Number
Number of Neutrons = Mass Number - Atomic Number
For krypton:
Number of Protons = Atomic Number = 36
Number of Electrons = Number of Protons = Atomic Number = 36
Number of Neutrons = Mass Number - Atomic Number = 84 - 36 = 48
Electrostatics is <span> a branch of physics that deals with the phenomena and properties of stationary or slow-moving electric charges. :) Hope this helps </span>
Niobium has Highest ionization energy.
<u>Explanation:</u>
The next ionization energy removes an electron from the same electron shell, which increases "ionization energy" due to "increased net charge"of the ion from which the electron is being removed.
Let's compare each of the metals first ionization energies,
Rubidium has its first ionization energy as 403 kJ / mol.
Zirconium has its first ionization energy as 660 KJ / mol.
Niobium has its first ionization energy as 664 KJ / mol.
From the given data above, we can infer that Rubidium has the least Ionization energy whereas Niobium has the highest Ionization energy. We can give the increasing order of the given elements as follows-
Rubidium < Zirconium < Niobium