The value of normal force as the slider passes point B is
The value of h when the normal force is zero
<h3>How to solve for the normal force</h3>
The normal force is calculated using the work energy principle which is applied as below
K₁ + U₁ = K₂
k represents kinetic energy
U represents potential energy
the subscripts 1,2 , and 3 = a, b, and c
for 1 to 2
K₁ + W₁ = K₂
0 + mg(h + R) = 0.5mv²₂
g(h + R) = 0.5v²₂
v²₂ = 2g(1.5R + R)
v²₂ = 2g(2.5R)
v²₂ = 5gR
Using summation of forces at B
Normal force, N = ma + mg
N = m(a + g)
N = m(v²₂/R + g)
N = m(5gR/R + g)
N = 6mg
for 1 to 3
K₁ + W₁ = K₃ + W₃
0 + mgh = 0.5mv²₃ + mgR
gh = 0.5v²₃ + gR
0.5v²₃ = gh - gR
v²₃ = 2g(h - R)
at C
for normal force to be zero
ma = mg
v²₃/R = g
v²₃ = gR
and v²₃ = 2g(h - R)
gR = 2gh - 2gR
gR + 2gR = 2gh
3gR = 2gh
3R/2 = h
Learn more about normal force at:
brainly.com/question/20432136
#SPJ1
Explanation:
Answer is B.
B. It has a central nucleus composed of 29 protons and 35 neutrons,surrounded by an electron cloud containing 29 electrons.
I hope it's helpful!
The statement 'all energy in the universe is a result of mass being converted into energy' correctly describes mass-energy equivalence.
<h3>What is mass-energy equivalence?</h3>
The expression mass-energy equivalence refers to the proportion of matter that can be converted into energy in the universe.
This mass-energy equivalence is an outcome of process of converting mass into energy.
In conclusion, the statement 'all energy in the universe is a result of mass being converted into energy' correctly describes mass-energy equivalence.
Learn more about mass-energy equivalence here:
brainly.com/question/3171044
#SPJ1