The two are Celsius and Kelvin. the most used is Kelvin. the reason is that it is more precise measurement.
Answer:
See figure 1
Explanation:
In this question, we have to start with the <u>protonation of the double bond</u>. In carvone we have two double bonds, so, we have to decide first which one would be protonated.
The problem states that the <u>terminal alkene</u> is the one that would is protonated. Therefore, we have to do the <u>protonation</u> in the double bond at the bottom to produce the <u>carbocation number 1</u>. Then, a hydride shift takes place to produce the <u>carbocation number 2</u>. A continuation, an <u>elimination reaction</u> takes place to produce the <u>conjugated diene</u>. Then the diene is protonated at the <u>carbonyl group</u> and with an elimination reaction of an hydrogen in the <u>alpha carbon</u> we can obtain <u>carvacol. </u>
Answer:
Hydroxyl
Explanation:
A hydroxyl group is a functional group that attaches to some molecules containing an oxygen and hydrogen atom, bonded together. Also spelled hydroxy, this functional group provides important functions to both alcohols and carboxylic acids.
The many electron diamonds around the central carbon are 1689
<u>Answer:</u> The standard free energy change of formation of
is 92.094 kJ/mol
<u>Explanation:</u>
We are given:

Relation between standard Gibbs free energy and equilibrium constant follows:

where,
= standard Gibbs free energy = ?
R = Gas constant = 
T = temperature = ![25^oC=[273+25]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5DK%3D298K)
K = equilibrium constant or solubility product = 
Putting values in above equation, we get:

For the given chemical equation:

The equation used to calculate Gibbs free change is of a reaction is:
![\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f_{(product)}]-\sum [n\times \Delta G^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the Gibbs free energy change of the above reaction is:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(Ag^+(aq.))})+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times \Delta G^o_f_{(Ag_2S(s))})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag%5E%2B%28aq.%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag_2S%28s%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![285.794=[(2\times 77.1)+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times (-39.5))]\\\\\Delta G^o_f_{(S^{2-}(aq.))=92.094J/mol](https://tex.z-dn.net/?f=285.794%3D%5B%282%5Ctimes%2077.1%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%28-39.5%29%29%5D%5C%5C%5C%5C%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%3D92.094J%2Fmol)
Hence, the standard free energy change of formation of
is 92.094 kJ/mol