Answer:
4.43 g Fe
Explanation:
To find the mass of iron, you need to (1) convert grams Al to moles Al (via molar mass), then (2) convert moles Al to moles Fe (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles Fe to grams Fe (via molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs because the given value (2.14) has 3 sig figs.
Molar Mass (Al): 26.982 g/mol
2 Al(s) + Fe₂O₃ ---> 2 Fe(s) + Al₂O₃(s)
Molar Mass (Fe): 55.845 g/mol
2.14 g Al 1 mole 2 moles Fe 55.845 g
---------------- x ----------------- x -------------------- x ------------------ = 4.43 g Fe
26.982 g 2 moles Al 1 mole
Yes, because if its higher than their will be more aquatic life able to live their.
Answer:
False
Explanation:
In Nuclear plants accidents such as explosions can occur which may lead to loss of life or severe injuries.
Nuclear energy production does not produce emissions but it produces radioactive waste which have to be stored adequately to prevent pollution. Since nuclear waste cannot be destroyed, measures have to be taken to adequately store the waste.
If the nuclear plant is being attacked, it can be used as a nuclear weapon to create disaster
Density= mass/volume aluminum can= 174 •g/ 4 • cm ^3. =2.76•g•cm ^-3
Answer: The pressure of the He is 2.97 atm
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.
Given :
=total pressure of gases = 6.50 atm
= partial pressure of Nitrogen = 1.23 atm
= partial pressure of oxygen = 2.3 atm
= partial pressure of Helium = ?
putting in the values we get:
The pressure of the He is 2.97 atm