The solution would be like
this for this specific problem:
<span>5.5 g = g + v^2/r </span><span>
<span>4.5 g =
v^2/r </span>
<span>v^2 = 4.5
g * r </span>
<span>v = sqrt
( 4.5 *9.81m/s^2 * 350 m) </span>
v = 124
m/s</span>
So the pilot will black out for this dive at 124
m/s. I am hoping that these answers have satisfied your query and it
will be able to help you in your endeavors, and if you would like, feel free to
ask another question.
Answer:
being dead, it prevents your body from working
Explanation:
No. A neutron star is the weird remains of a star that blew its outer layers off
in a nova event, and then had enough mass left so that gravity crushed its
electrons into its protons, and then what was left of it shrank down to a sphere
of unimaginably dense neutron soup. But it didn't have enough mass to go
any farther than that.
A black hole is the remains of a star that had enough mass to go even farther
than that. No force in the universe was able to stop it from contracting, so it
kept contracting until its mass occupied no volume ... zero. It became even
more weird, and is composed of a substance that we don't know anything about
and can't describe, and occupies zero volume.
Contrary to popular fairy tales, a black hole doesn't reach out and "suck things in".
It's just so small (zero) that things can get very close to it. You know that gravity
gets stronger as you get closer to an object, so if the object has no size at all, you
can get really really close to it, and THAT's where the gravity gets really strong.
You may weigh, let's say, 100 pounds on the Earth. But you're like 4,000 miles
from the center of the Earth. What if all of the earth's mass was crammed into
the size of a bean. Then you could get 1 inch from it, and at that distance from
the mass of the Earth, you would weigh 25,344,000,000 pounds.
But Earth's mass is not enough to make a black hole. That takes a minimum
of about 3 times the mass of the sun, which is right about 1 million times the
Earth's mass. THEN you can get a lightweight black hole.
Do you see how it works now ?
I know. It all seems too fantastic to be true.
It sure does.
The characteristics of the scalar product allows to find the angle between the two vectors is:
The scalar product is the product between two vectors whose result is a scalar.
A . B = |A| |B| cos θ
Where A and B are the vectors, |A| and |B| are the modules of the vectors and θ at the angle between them.
The vector is given in Cartesian coordinates and the unit vectors in these coordinates are perpendicular.
i.i = j.j = 1
i.j = 0
A . B = (4 i - 4j). * -5 i + 7j)
A . B = - 4 5 - 4 7
A. B = -48
We look for the modulus of each vector.
|A| =
|A| =
|A| = 4 √2
|B| =
|B| = 8.60
We substitute.
-48 = 4√2 8.60 cos θ
-48 = 48.66 cos θ
θ = cos⁻¹
θ = 170º
In conclusion using the dot product we can find the angle between the two vectors is:
Learn more about the scalar product here: brainly.com/question/1550649
Answer:
The dependent variable is the variable that is studied while the independent variable is the variable that is being manipulated