Balanced chemical equation for the reaction is:
2S
(g) +
(g)+ 2
O (l) ⇒
Moles of
formed is 5.75 moles.
Moles of oxygen used is 5.75 moles in the reaction.
Explanation:
Data given:
moles of S
= 11.5 moles
moles of
= ?
Moles of
needed =?
balanced equation with states of matter =?
Balanced chemical reaction under STP condition is given as:
2S
(g) +
(g) + 2
O (l) ⇒
From the balanced reaction 2 moles of sulphur dioxide reacted to form 1 mole of sulphuric acid:
so, from 11.5 moles of S
, x moles of
is formed

2x = 11.5
x = 5.75 moles of sulphuric acid formed.
From the balanced reaction 1 mole of oxygen reacted to form 1 mole of sulphuric acid.
when 11.5 moles of Sulphur dioxide reacted then oxygen in the reaction is 5.75 moles.
Answer:
CnH2n-2
im pretty sure thats the answer
Potassium oxide is an ionic compound. The potassium has a charge of <span>K+</span> and oxygen has a charge of <span>O<span>2−</span></span>. We need 2 potassium ions to balance one oxide ion making the formula <span><span>K2</span>O</span>.
Potassium hydroxide is an ionic compound. The potassium has a charge of <span>K+</span> and hydroxide has a charge of <span>OH−</span>. We need 1 potassium ion to balance one hydroxide ion making the formula KOH.
<span><span>K2</span>O+<span> H2</span>O→KOH</span>
To balance the equation we place a coefficient of 2 in front of the potassium hydroxide.
<span><span>K2</span>O+<span>H2</span>O→2KOH</span>
I hope this was helpful.
Answer:
A right? I'm pretty sure it's A
A.) baking soda is the answer