Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Answer:
yes
Explanation:
because it has the potential to move
Answer:
distance = 6 m
Explanation:
- Distance is a scalar quantity (so, only magnitude, no direction), and it is calculated as the scalar sum of all the distances travelled by an object during its motion, regardless of the direction. So, in this problem, the distance covered by the pinecone is
d = 4 m + 2 m = 6 m
- Displacement is a vector quantity (magnitude+direction), and its magnitude is calculate as the distance in a straight line between the final position and the initial position of the object. In this case, the final position is 2 m west and the initial position is 0 m, so the displacement of the pinecone is
d = 2 m west - 0 m = 2 m west
So, a scalar quantity from this scenario is
distance = 6 m
Answer: 1,224 km/h
Explanation:
To do this, we pick the first unit and convert
Picking m first and converting to km:
Since we're converting from a non-prefix to a prefix, we divide the value by the prefix were taking it to. In this case, kilo = 10³ which means we're going to divide our value by 1000 to convert it from m to km
340 m/s ÷ 1000 = 0.34 km/s
Now, let's convert our seconds to hour:
We'll need to calculate how many hours is equivalent to one second first;
1 hr = 60×60 seconds
X hr = 1 second
*Cross multiply*
1 × 1 = X × 60 × 60
1 = 3,600 X
X = 1 / 3,600
X = 2.778×10⁻⁴ hour
So, in the place of "1 Second", we're going to be inserting 2.778×10⁻⁴ hour instead
0.34 km / s = 0.34 km / 2.778×10⁻⁴ hour
(0.34 / 2.778×10⁻⁴) km/hour
1,224 km/h.
340 m/s = 1,224 km/h
Answer:
The stars at the center bulge are bigger and brighter than the stars in the arms.
Explanation: