Answer:
a) 19.2 s
b) No
Explanation:
Given:
v₀ = 125 m/s
a = -6.5 m/s²
v = 0 m/s
a) Find: t
v = at + v₀
(0 m/s) = (-6.5 m/s²) t + (125 m/s)
t ≈ 19.2 s
b) Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (125 m/s)² + 2 (-6.5 m/s²) Δx
Δx ≈ 1200 m
An aircraft carrier that's 850 meters long won't be long enough.
Answer:
p = 8N/mm2
Explanation:
given data ;
diameter of cylinder = 150 mm
thickness of cylinder = 6 mm
maximum shear stress = 25 MPa
we know that
hoop stress is given as =
axial stress is given as =
maximum shear stress = (hoop stress - axial stress)/2
putting both stress value to get required pressure


t = 6 mm
d = 150 mm
therefore we have pressure
p = 8N/mm2
I think it’s cause no change i think
Since we have , v=f×lambda (wavelength). Where v equals 350m/s and wavelength equals 3.80. so it will become f = v/lambda=350/3.80=92.1052Hz
Answer:
Fundamental frequency= 174.5 hz
Explanation:
We know
fundamental frequency=
velocity =
mass per unit length=
=0.00427
Now calculating velocity v=
=244.3
Distance between two nodes is 0.7 m.
Plugging these values into to calculate frequency
f =
=174.5 hz