Answer:
Terminal speed, v = 6901.07 m/s
Explanation:
It is given that,
Mass of the horizontal bar, m = 30 g = 0.03 kg
Length of the bar, l = 13 cm = 0.13 m
Magnetic field, 
Resistance, R = 1.2 ohms
We need to find the terminal speed oat which the bar falls. When terminal speed is reached,
Force of gravity = magnetic force
..................(1)
i is the current flowing
l is the length of the rod
Due to the motion in rods, an emf is induced in the coil which is given by :
, v is the speed of the bar


Equation (1) becomes,



v = 6901.07 m/s
So, the terminal speed at which the bar falls is 6901.07 m/s. Hence, this is the required solution.
Answer:
a) 
b) 
Explanation:
Given:
- initial rotational speed of phonograph,

- final rotational speed of phonograph,

- time taken for the acceleration,

a)
Now angular acceleration:



b)
Using eq. of motion:



F = kq1q2/r^2
<span>q1 is first charge </span>
<span>q2 is second charge </span>
<span>k is 9 E9 </span>
<span>r is distance between them </span>
<span>F = (9E9)(2 E-6)(4 E-6)/2^2 = 0.018 N </span>
<span>A postive answer indicates a repulsive force</span>