Answer : The momentum of ball is, 15 kg.m/s
Explanation :
Momentum : It is defined as the motion of a moving body. Or it is defined as the product of mass of velocity of an object.
Formula of momentum is:
where,
p = momentum = ?
m = mass = 1.5 kg
v = velocity = 10 m/s
Now put all the given values in the above formula, we get:
Therefore, the momentum of ball is 15 kg.m/s
25% ao semestre = 25%/6 ao mes.
Um mes tem em media 365/12 dias, ou 30,42 dias/mes.
18 dias = 18/30,42 mes
5 meses + 18 dias = 5 meses + 18/30,42 mes = 5,592 mes
a taxa de juros por 5 meses e 18 dias e 25%/6 * 5.592 = 23,3%
123,3% * $125.000 = $154.125,00
Answer:
T=0.372 s, f=2.7 Hz, w=16.9 rad/s, k=179.2 N/m, v= 8.78 m/s, F= 48.4 N
Explanation:
a.)
Period: It is already given in the question "oscillator repeats its motion every 0.372 s".
So T=0.372 s
b)
frequency= f = 1/ T
f = 1/ 0.372
f=2.7 Hz
c).
Angular frequency= w= 2πf
w= 2*π*2.7
w=16.9 rad/s
d)
Spring Constant:
As w=
⇒w²= k/m
⇒k= m*w²
⇒k= 0.628 * 16.9² N/m
⇒k=179.2 N/m
e)
The mass will have maximum speed when it passes through the mean position.
At mean position
Maximum elastic potential energy = Maximum kinetic energy
1/2 k A² = 1/2 m v² ( A is amplitude of oscillation)
⇒ v=
⇒ v=
\
⇒ v= 8.78 m/s
f)
Maximum force will be exerted on the block when it is at maximum distance.
F= k* A ( A is amplitude of oscillation)
F= 179.2 * 0.27 N
F= 48.4 N
Answer:
(C) 40m/s
Explanation:
Given;
spring constant of the catapult, k = 10,000 N/m
compression of the spring, x = 0.5 m
mass of the launched object, m = 1.56 kg
Apply the principle of conservation of energy;
Elastic potential energy of the catapult = kinetic energy of the target launched.
¹/₂kx² = ¹/₂mv²
where;
v is the target's velocity as it leaves the catapult
kx² = mv²
v² = kx² / m
v² = (10000 x 0.5²) / (1.56)
v² = 1602.56
v = √1602.56
v = 40.03 m/s
v ≅ 40 m/s
Therefore, the target's velocity as it leaves the spring is 40 m/s