-- If the work is done to make the object move faster, then
the work done becomes kinetic energy of the object.
-- If work is done on the object but it doesn't move any faster,
then there must be friction holding it back. In that case, the work
that's done just to keep the object moving becomes heat, in the
places where the friction acts on it.
B: an increase in acceleration caused an increase in force.
This is based on the concept of force on an object.
Now, formula for force is commonly known as;
Force = mass × acceleration
Now, mass and acceleration are the input values that make the output which is the Force to either increase or decrease.
- Now, for the line of dominoes to fall, it means that the force was so overwhelming that the dominoes couldn't resist it.
Now, this output which is the force became so much as a result of the increase in acceleration of the motion that triggered its movement.
Moreover, the force is directly proportional to the acceleration!
Thus, we can say that an increase in acceleration caused an increase in force.
Read more at; brainly.in/question/25954363
Answer:
the spring constant k = 
the value for the damping constant 
Explanation:
From Hooke's Law

Thus; the spring constant k = 
The amplitude is decreasing 37% during one period of the motion


Therefore; the value for the damping constant 
Answer:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
Explanation:
The general equation to calculate the center of mass is:

Any differential of mass can be calculated as:
Where "a" is the radius of the circle and λ is the linear density of the wire.
The linear density is given by:

So, the differential of mass is:


Now we proceed to calculate X and Y coordinates of the center of mass separately:


Solving both integrals, we get:


Therefore, the position of the center of mass is:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)