Answer: 365 K
Explanation:
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 1.00
= rate constant at
= 5.00
= activation energy for the reaction = 28.90 kJ/mol= 28900 j/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 313 K
= final temperature = ?
Now put all the given values in this formula, we get
![\log (\frac{5.00}{1.00})=\frac{28900}{2.303\times 8.314J/mole.K}[\frac{1}{313K}-\frac{1}{T_2K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B5.00%7D%7B1.00%7D%29%3D%5Cfrac%7B28900%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B313K%7D-%5Cfrac%7B1%7D%7BT_2K%7D%5D)
![0.69=\frac{28900}{2.303\times 8.314J/mole.K}[\frac{1}{313K}-\frac{1}{T_2K}]](https://tex.z-dn.net/?f=0.69%3D%5Cfrac%7B28900%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B313K%7D-%5Cfrac%7B1%7D%7BT_2K%7D%5D)

Therefore, 365 K is required to increase the reaction rate by 5.00 times.
Answer:
82.28g
Explanation:
Given parameters:
Number of moles of hydrogen gas = 7.26 moles
Unknown:
Amount of ammonia produced = ?
Solution:
We have to write the balanced equation first.
N₂ + 3H₂ → 2NH₃
Now, we work from the known to the unknown;
3 moles of H₂ will produce 2 moles of NH₃
7.26 mole of H₂ will produce
= 4.84 moles of NH₃
Molar mass of NH₃ = 14 + 3(1) = 17g/mol
Mass of NH₃ = number of moles x molar mass = 4.84 x 17 = 82.28g
Answer:
A. is the correct point.
Explanation:
This is true because no matter how many mL of water is added, the solution only gets more height; the concentration in everything else stays the same, and water doesn't have any concentration. Very confusing, I know. Good luck!
The average atomic mass of Boron: 10.431 amu
<h3>Further explanation
</h3>
Isotopes are atoms whose no-atom has the same number of protons while still having a different number of neutrons.
So Isotopes are elements that have the same Atomic Number (Proton)
Atomic mass is the average atomic mass of all its isotopes
In determining the mass of an atom, as a standard is the mass of 1 carbon-12 atom whose mass is 12 amu
Mass atom X = mass isotope 1 . % + mass isotope 2.% + ...
The average atomic mass of boron :

Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54