Explanation:
mass H2O2 = 55 mL(1.407 g/mL) = 80.85 g
molar mass H2O2 = 2(1.01 g/mol) + 2(16.00 g/mol) = 34.02 g/mol
moles H2O2 = 80.85 g/34.02 g/mol = 2.377 moles H2O2
For each mole of H2O2 you obtain 0.5 mole of O2 (see the equation).
moles O2 = 2.377 moles H2O2 (1 mole O2)/(2 moles H2O2) = 1.188 moles O2
Now, you need the temperature. If you are at STP (273 K, and 1.00 atm) then 1 mole of an ideal gas at STP has a volume of 22.4 L. Without temperature you are not really able to continue. I will assume you are at STP.
Volume O2 = 1.188 moles O2(22.4 L/mole) = 0.0530 L of O2.
which is 53 mL.
Answer:
11) the difference in heat energies between products and reactants
12) enthalpy change
Explanation:
The heat of reaction is defined as that energy released or absorbed as chemical substances participate in a chemical reaction. It is a term used to denote the change in energy as reactants change into products.
Another name of heat of reaction is enthalpy of reaction. It is a state function since it depends on the initial and final states of the system.
Answer:
52.54 %
Explanation:
Half life = 29 years
Where, k is rate constant
So,
The rate constant, k = 0.023902 hour⁻¹
From 1964 to 1991:
Time = 27 years
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
So,
<u>The strontium-90 remains in the bone = 52.54 %</u>
Answer is: 4.45 grams of methane gas <span>need to be combusted</span>.
Balanced chemical reaction: CH₄ + 2O₂ → CO₂ + 2H₂O.
Ideal gas law: p·V =
n·R·T.<span>
p = 1.1 atm.
T = 301 K.
V(H</span>₂O) <span>= 12.5 L.
R = 0,08206 L·atm/mol·K.
</span>n(H₂O) = <span>1.1 atm ·
12.5 L ÷ 0,08206 L·atm/mol·K · 301 K.
</span>n(H₂O) = 0.556 mol.
From chemical reaction: n(H₂O) : n(CH₄) = 2 : 1.
n(CH₄) = 0.556 mol ÷ 2 = 0.278 mol.
m(CH₄) = 0.278 mol · 16 g/mol.
m(CH₄) = 4.448 g.