Answer:
B
Explanation:
Given:-
- The charge of the test particle q = 3.0 * 10^-9 C
- The force exerted by the metal sphere F = 6.0 * 10^-5 N
Find:-
The magnitude and direction of the electric field
strength at this location?
Solution:-
- The relationship between the electrostatic force F exerted by the metal sphere on the test-charge and the Electric Field strength E at the position of test charge is given by:
F = E*q
- Using the data given we can determine E:
E = F / q
E = (6.0 * 10^-5) / (3.0 * 10^-9)
E = 20,000 N/C
- The direction of electric field is given by the net charge of the source ( metal sphere). The metal sphere is negative charge hence the direction of Electric Field strength E is directed towards the metal sphere.
Answer:
We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved
Explanation:
B. I belive :)
Hopes this helps
The answer is b because the sun's surface temperature is 5,778 K.