Answer:
Explanation:
N2(g)+O2(g)⇌2NO(g),
N2(g)+2H2(g)⇌N2H4(g),
2H2O(g)⇌2H2(g)+O2(g),
If we add above reaction we will get:
2N2(g)+2H2O(g)⇌2NO(g)+N2H4(g) Eq (1)
Equilibrium constant for Eq (1) is
Divide Eq (1) by 2, it will become:
N2(g)+H2O(g)⇌NO(g)+1/2N2H4(g) Eq (2)
Equilibrium constant for Eq (2) is
The person would look B) in the nucleus.
Hope this helps!
-Payshence xoxo
Answer:
H2 > N2 > Ar > CO2
Explanation:
Graham's law explains why some gases efuse faster than others. This is due to the difference i their molar mass. Generally; The rate of effusion of gaseous substances is inversely proportional to the square rot of its molar mass.
This means gases with low molar masses would have higher efusion rate compared to gases with higher molar masses.
So now we just need to compare the molar masses of the various gases;
Ar - 39.95
CO2 - 44.01
H2 - 2
N2 - 28.01
To obtain the order in increasing rate, we have to order the gases in decreasing molar mass. This order of increasing rate is given as;
H2 > N2 > Ar > CO2
Answer:
kinetic
Explanation:
kinetic energy is the energy possessed by a body due to its motion.
Answer:
Explanation:
C₂H₂ + 2H₂ = C₂H₆
1 mole 2 mole 1 mole
Feed of reactant is 1.6 mole H₂ / mole C₂H₂
or 1.6 mole of H₂ for 1 mole of C₂H₂
required ratio as per chemical reaction written above
2 mole of H₂ for 1 mole of C₂H₂
So H₂ is in short supply . Hence it is limiting reagent .
1.6 mole of H₂ will react with half of 1.6 mole or .8 mole of C₂H₂ to form .8 mole of C₂H₆
a )Calculate the stoichiometric reactant ratio = mole H₂ reacted/mole C₂H₂ reacted
= 1.6 / .8 = 2 .
b )
yield ratio = mole C₂H₆ formed / mole H₂ reacted ) = 0.8 / 1.6 = 1/2 = 0.5 .