Answer:
Hire, organize, and supply workers.
Explanation:
Answer:
a)906.5 Nm^2/C
b) 0
c) 742.56132 N•m^2/C
Explanation:
a) The plane is parallel to the yz-plane.
We know that
flux ∅= EAcosθ
3.7×1000×0.350×0.700=906.5 N•m^2/C
(b) The plane is parallel to the xy-plane.
here theta = 90 degree
therefore,
0 N•m^2/C
(c) The plane contains the y-axis, and its normal makes an angle of 35.0° with the x-axis.
therefore, applying the flux formula we get
3.7×1000×0.3500×0.700×cos35°= 742.56132 N•m^2/C
<span>For this example, the value presented would be considered a statistic. The value is a statistic as it represents a numerical measurement of a sample. If it were a parameter, it would need to represent a numerical measurement of a population.</span>
Answer:

Explanation:
The force on the point charge q exerted by the rod can be found by Coulomb's Law.

Unfortunately, Coulomb's Law is valid for points charges only, and the rod is not a point charge.
In this case, we have to choose an infinitesimal portion on the rod, which is basically a point, and calculate the force exerted by this point, then integrate this small force (dF) over the entire rod.
We will choose an infinitesimal portion from a distance 'x' from the origin, and the length of this portion will be denoted as 'dx'. The charge of this small portion will be 'dq'.
Applying Coulomb's Law:

The direction of the force on 'q' is to the right, since both charges are positive, and they repel each other.
Now, we have to write 'dq' in term of the known quantities.

Now, substitute this into 'dF':

Now we can integrate dF over the rod.
