1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVETLANKA909090 [29]
2 years ago
7

Consider the formation of p-nitrophenol from p-nitrophenyl trimethyl acetate. The process is known as enzymatic hydrolysis and i

t occurs in the presence of the enzyme elastase. Along with the formation of p-nitrophenol, trimethyl acetic acid is also formed which is an undesired byproduct. p-nitrophenol is an important intermediate in the manufacture of several pharmaceuticals. Your role as a Chemical Engineer is to maximize the production of p-nitrophenol. The reactions can be denoted as:
E+S → P+ES R1
ES+PE+A R2
where e denotes the enzyme elastase, denotes the substrate p-nitrophenyl trimethyl acetate, es denotes enzyme-substrate intermediate and A denotes the trimethyl acetic acid. The rate of the reactions 1 and 2 are given by:
kg Cs KM + C r2 = kxCp
where Cs and Cp denote the concentrations of the substrate and the product, k, and ky are the rate constants given by 0.015 s' and 0.0026 s. Ky is the Michaelis - Menten constant and is given by 5.53 mol/m!. All the reactants and products are in the liquid phase. The initial concentrations of S and E are 0.5 mol/m3 and 0.001 mol/m..Consider the above reaction to occur in a batch reactor for 15 minutes.
a. Plot the concentration profiles of S, P and A as a function of time in a single figure.
b. Plot the selectivity of P with respect to 5 as a function of time b.
Engineering
1 answer:
solniwko [45]2 years ago
6 0

Solution :

cs=zeros(9001);

ca=zeros(9001);

cp=zeros(9001);

psi=zeros(9001);

t=[0:0.1:900];

cs(1)=0.5;

ce(1)=0.001;

cp(1)=0;

ca(1)=0;

psi(1)=0;

for i=1:1:9000

cs(i+1)=cs(i)-0.1*((0.015*cs(i))/(5.53+cs(i)));

cp(i+1)=cp(i)+0.1*((0.015*cs(i))/(5.53+cs(i))-0.0026*cp(i));

ca(i+1)=ca(i)+0.1*0.0026*cp(i);

psi(i+1)=((cp(i+1)-cp(i)))/((cs(i)-cs(i+1)));

end

plot(t,cs,t,cp,t,ca);

plot(t,psi);

You might be interested in
2. The following segment of carotid artery has an inlet velocity of 50 cm/s (diameter of 15 mm). The outlet has a diameter of 11
ahrayia [7]

This question is incomplete, the missing diagram is uploaded along this answer below.

Answer:

the forces required to keep the artery in place is 1.65 N

Explanation:

Given the data in the question;

Inlet velocity V₁ = 50 cm/s = 0.5 m/s

diameter d₁ = 15 mm = 0.015 m

radius r₁ = 0.0075 m

diameter d₂ = 11 mm = 0.011 m

radius r₂ = 0.0055 m

A₁ = πr² = 3.14( 0.0075 )² =  1.76625 × 10⁻⁴ m²

A₂ = πr² = 3.14( 0.0055 )² =  9.4985 × 10⁻⁵ m²

pressure at inlet P₁ = 110 mm of Hg = 14665.5 pascal

pressure at outlet P₂ = 95 mm of Hg = 12665.6 pascal

Inlet volumetric flowrate = A₁V₁ = 1.76625 × 10⁻⁴ × 0.5 = 8.83125 × 10⁻⁵ m³/s

given that; blood density is 1050 kg/m³

mass going in m' = 8.83125 × 10⁻⁵ m³/s × 1050 kg/m³ = 0.092728 kg/s

Now, using continuity equation

A₁V₁ = A₂V₂

V₂ = A₁V₁ / A₂ = (d₁/d₂)² × V₁

we substitute

V₂ =  (0.015 / 0.011 )² × 0.5

V₂ = 0.92975 m/s

from the diagram, force balance in x-direction;

0 - P₂A₂ × cos(60°) + Rₓ = m'( V₂cos(60°) - 0 )    

so we substitute in our values

0 - (12665.6 × 9.4985 × 10⁻⁵)  × cos(60°) + Rₓ = 0.092728( 0.92975 cos(60°) - 0 )    

0 - 0.6014925 + Rₓ =  0.043106929 - 0

Rₓ = 0.043106929 + 0.6014925

Rₓ = 0.6446 N

Also, we do the same force balance in y-direction;

P₁A₁ - P₂A₂ × sin(60°) + R_y = m'( V₂sin(60°) - 0.5 )  

we substitute

⇒ (14665.5 × 1.76625 × 10⁻⁴) - (12665.6 × 9.4985 × 10⁻⁵) × sin(60°) + R_y = 0.092728( 0.92975sin(60°) - 0.5 )

⇒ 1.5484 + R_y = 0.092728( 0.305187 )

⇒ 1.5484 + R_y = 0.028299    

R_y = 0.028299 - 1.5484

R_y = -1.52 N

Hence reaction force required will be;

R = √( Rₓ² + R_y² )

we substitute

R = √( (0.6446)² + (-1.52)² )

R = √( 0.41550916 + 2.3104 )

R = √( 2.72590916 )

R = 1.65 N

Therefore, the forces required to keep the artery in place is 1.65 N

 

7 0
2 years ago
The design specifications of a 1.2-m long solid circular transmission shaft require that the angle of twist of the shaft not exc
Verizon [17]

Answer:

c = 18.0569 mm

Explanation:

Strategy  

We will find required diameter based on angle of twist and based on shearing stress. The larger value will govern.  

Given Data  

Applied Torque

T = 750 N.m

Length of shaft

L = 1.2 m

Modulus of Rigidity

G = 77.2 GPa

Allowable Stress

г = 90 MPa

Maximum Angle of twist  

∅=4°

∅=4*\pi/180

∅=69.813 *10^-3 rad

Required Diameter based on angle of twist  

∅=TL/GJ

∅=TL/G*\pi/2*c^4

∅=2TL/G*\pi*c^4

c=\sqrt[4]{2TL/\pi G }∅

c=18.0869 *10^-3 rad

Required Diameter based on shearing stress

г = T/J*c

г = [T/(J*\pi/2*c^4)]*c

г =[2T/(J*\pi*c^4)]*c

c=17.441*10^-3 rad

Minimum Radius Required  

We will use larger of the two values  

c= 18.0569 x 10^-3 m  

c = 18.0569 mm  

3 0
3 years ago
Technician A says that 5W-30 would be better to use than 20W-50 in most vehicles in
shtirl [24]
Technician is correct sorry if im wronghg
5 0
3 years ago
Read 2 more answers
An o ring intended for use in a hydraulic system using MIL-H-5606 (mineral base) fluid will be marked with
Alex_Xolod [135]

An o ring intended for use in a hydraulic system using MIL-H-5606 (mineral base) fluid will be marked with a blue stripe or dot.

8 0
2 years ago
Consider an aircraft powered by a turbojet engine that has a pressure ratio of 9. The aircraft is stationary on the ground, held
77julia77 [94]

Answer:

The break force that must be applied to hold the plane stationary is 12597.4 N

Explanation:

p₁ = p₂, T₁ = T₂

\dfrac{T_{2}}{T_{1}} = \left (\dfrac{P_{2}}{P_{1}}  \right )^{\frac{K-1}{k} }

{T_{2}}{} = T_{1} \times \left (\dfrac{P_{2}}{P_{1}}  \right )^{\frac{K-1}{k} } = 280.15 \times \left (9  \right )^{\frac{1.333-1}{1.333} } = 485.03\ K

The heat supplied = \dot {m}_f × Heating value of jet fuel

The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s

The heat supplied = \dot m · c_p(T_3 - T_2)

\dot m = 20 kg/s

The heat supplied = 20*c_p(T_3 - T_2) = 21,350 kJ/s

c_p = 1.15 kJ/kg

T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K

p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa

p₃ = p₂ = 855 kPa

T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K

T₄ = 1413.3 - 204.88 = 1208.42 K

\dfrac{T_5}{T_4}  = \dfrac{2}{1.333 + 1}

T₅ = 1208.42*(2/2.333) = 1035.94 K

C_j = \sqrt{\gamma \times R \times T_5} = √(1.333*287.3*1035.94) = 629.87 m/s

The total thrust = \dot m × C_j = 20*629.87 = 12597.4 N

Therefore;

The break force that must be applied to hold the plane stationary = 12597.4 N.

5 0
3 years ago
Other questions:
  • The ratio of the weight of a substance to the weight of equal volume of water is known as a) Density b) specific gravity c) spec
    8·1 answer
  • Design a posttest-only experiment that would test each of the following causal claims. For each one, identify the study’s indepe
    13·1 answer
  • Who can work on a fixed ladder that extends more than 24 feet?
    11·1 answer
  • Part of the following pseudocode is incompatible with the Java, Python, C, and C++ language Identify the problem. How would you
    12·1 answer
  • The displacement of a certain object is described by y(t) = 23 sin 5t, where t is measured in seconds. Compute its period and it
    9·1 answer
  • A pump transfers water from a lake to a reservoir, which is located 29.2 m above the lake, at a rate of 11.5 L/s. Determine the
    12·1 answer
  • An op-amp differential amplifier is built using four identical resistors, each having a tolerance of ±5%. Calculate the worst p
    14·1 answer
  • Concrete ___ support and anchor the bottom of steel columns and wood post, which support beams that are pare of framing system o
    11·1 answer
  • During welding in the vertical position, the torch angle can be varied to control sagging.
    9·1 answer
  • Which of following is not malicious ?<br> Worm<br> Trogan Horse<br> Driver<br> Virus
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!