1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixas84 [53]
3 years ago
13

Draw a radial power circuit arrangement containing 3 single fused sockets and 2 double unfused sockets showing the live, earth a

nd neutral wiring
Engineering
1 answer:
sweet [91]3 years ago
4 0

Answer:

Attached below is the Radial power circuit arrangement

Explanation:

Radial power circuit arrangement is done in a way that a single cable starts from the fuse box and connects to all the outlet socket contained in the circuit also the cable contains wires ( live , neutral and earth )

The advantage of a radial power circuit arrangement is that it enables easy identification of electrical faults on the circuit.

You might be interested in
What is the subtotal for the building materials in the bill? The subtotal should be the cost of the materials only. Don't add ta
Alexxx [7]

Answer:

Cost before adding taxes and incorporating variations

Explanation:

The sub-totals are basically sum of the cost from individual pages before including value added tax or any other tax depending with the state regulations. At this stage, contingencies and variation of prices are not considered. Therefore, the sub-total for building materials only include the materials on site or materials used as per the bill of quantities and certified by the engineer.

3 0
4 years ago
assume a strain gage is bonded to the cylinder wall surface in the direction of the axial strain. The strain gage has nominal re
Anastasy [175]

Explanation:

Note: For equations refer the attached document!

The net upward pressure force per unit height p*D must be balanced by the downward tensile force per unit height 2T, a force that can also be expressed as a stress, σhoop, times area 2t. Equating and solving for σh gives:

 Eq 1

Similarly, the axial stress σaxial can be calculated by dividing the total force on the end of the can, pA=pπ(D/2)2 by the cross sectional area of the wall, πDt, giving:

Eq 2

For a flat sheet in biaxial tension, the strain in a given direction such as the ‘hoop’ tangential direction is given by the following constitutive relation - with Young’s modulus E and Poisson’s ratio ν:

 Eq 3

Finally, solving for unknown pressure as a function of hoop strain:

 Eq 4

Resistance of a conductor of length L, cross-sectional area A, and resistivity ρ is

 Eq 5

Consequently, a small differential change in ΔR/R can be expressed as

 Eq 6

Where ΔL/L is longitudinal strain ε, and ΔA/A is –2νε where ν is the Poisson’s ratio of the resistive material. Substitution and factoring out ε from the right hand side leaves

 Eq 7

Where Δρ/ρε can be considered nearly constant, and thus the parenthetical term effectively becomes a single constant, the gage factor, GF

 Eq 8

For Wheat stone bridge:

 Eq 9

Given that R1=R3=R4=Ro, and R2 (the strain gage) = Ro + ΔR, substituting into equation above:

Eq9

Substituting e with respective stress-strain relation

Eq 10

Download docx
7 0
3 years ago
Shops should avoid purchasing any material sold in ____________.
snow_lady [41]

Answer: Aerosol Cans

Explanation: I just did the quiz

7 0
3 years ago
If an elevator repairer observes that cables begin to fray after 15 years, what process might he or she use to create a maintena
otez555 [7]

Answer:

inductive reasoning

Explanation:

Inductive reasoning is one of the type of reasoning method in which generalized consequences are derived from limited observations. By observing few data, general conclusions are drawn. The conclusions drawn are false in inductive reasoning. In the given situation, the conclusion drawn by the elevator repairer has been drawn by inductive reasoning. His observation of some cables led him to draw the conclusion about all the cables. The result of the reasoning is false.

5 0
3 years ago
A steady tensile load of 5.00kN is applied to a square bar, 12mm on a side and having a length of 1.65m. compute the stress in t
Shtirlitz [24]

Answer:

The stress in the bar is 34.72 MPa.

The design factor (DF) for each case is:

A) DF=0.17

B) DF=0.09

C) DF=0.125

D) DF=0.12

E) DF=0.039

F) DF=1.26

G) DF=5.5

Explanation:

The design factor is the relation between design stress and failure stress. In the case of ductile materials like metals, the failure stress considered is the yield stress. In the case of plastics or ceramics, the failure stress considered is the breaking stress (ultimate stress). If the design factor is less than 1, the structure or bar will endure the applied stress. By the opposite side, when the DF is higher than 1, the structure will collapse or the bar will break.

we will calculate the design stress in this case:

\displaystyle \sigma_{dis}=\frac{T_l}{Sup}=\frac{5.00KN}{(12\cdot10^{-3}m)^2}=34.72MPa

The design factor for metals is:

DF=\displaystyle \frac{\sigma_{dis}}{\sigma_{f}}=\frac{\sigma_{dis}}{\sigma_{y}}

The design factor for plastic and ceramics is:

DF=\displaystyle \frac{\sigma_{dis}}{\sigma_{f}}=\frac{\sigma_{dis}}{\sigma_{u}}

We now need to know the yield stress or the ultimate stress for each material. We use the AISI and ASTM charts for steels, materials charts for non-ferrous materials and plastics safety charts for the plastic materials.

For these cases:

A) The yield stress of AISI 120 hot-rolled steel (actually is AISI 1020) is 205 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{205MPa}=0.17

B) The yield stress of AISI 8650 OQT 1000 steel is 385 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{385MPa}=0.09

C) The yield stress of ductile iron A536-84 (60-40-18) is 40Kpsi, this is 275.8 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{275.8MPa}=0.125

D) The yield stress of aluminum allot 6061-T6 is 290 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{290MPa}=0.12

E) The yield stress of titanium alloy Ti-6Al-4V annealed (certified by manufacturers) is 880 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{880MPa}=0.039

F) The ultimate stress of rigid PVC plastic (certified by PVC Pipe Association) is 4Kpsi or 27.58 MPa, therefore:

DF=\displaystyle\frac{34.72MPa}{27.58 MPa}=1.26

In this case, the bar will break.

F) You have to consider that phenolic plastics are used as matrix in composite materials and seldom are used alone with no reinforcement. In this question is not explained if this material is reinforced or not, therefore I will use the ultimate stress of most pure phenolic plastics, in this case, 6.31 MPa:

DF=\displaystyle\frac{34.72MPa}{6.31 MPa}=5.5

This material will break.

3 0
3 years ago
Other questions:
  • An inclined rectangular sluice gate AB 1.2 m by 5 m size as shown in Fig. Q3 is installed to control the discharge of water. The
    6·1 answer
  • Technician A says that as wheelbase becomes shorter in a highway truck, its resistance to yaw is
    14·1 answer
  • Name one challenge for engineering managers wanting to implement the concurrent engineering concept
    12·1 answer
  • Describe the distribution of laminations used in the fabrication of a glulam member that is to be used principally as a bending
    13·1 answer
  • Which of these is NOT a function of Shock Absorbers?
    15·2 answers
  • a digital multimeter is set to read dc volts on the 4 volt scale the meter leads are connected to a 12 volt battery what will th
    14·2 answers
  • Technician A says that some vehicle makers do NOT apply undercoating to the floor pan. Technician B says that some vehicle maker
    11·1 answer
  • Where has the process of nuclear fusion been occurring for over four billion years
    6·1 answer
  • 1. Safety goggles, glasses, or face shields must be
    6·2 answers
  • Fill in the Blank
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!