Answer:
molarity = 0.385 moles/kg
Explanation:
Assume that the volume of the aqueous solution given is 1 liter = 1000 ml
Now, density can be calculated using the following rule:
density = mass / volume
Therefore:
mass = density * volume = 1.23 * 1000 = 1230 grams
Now, 0.467 m/L * 1L = 0.467 moles of HCl
We will get the mass of the 0.467 moles of HCl as follows:
mass = molar mass * number of moles = (1+35.5)*0.467 = 17.0455 grams
Now, we have the mass of the solution (water + HCl) calculated as 1230 grams and the mass of the HCl calculated as 17.0455 grams. We can use this information to get the mass of water as follows:
mass of water = 1230 - 17.0455 = 1212.9545 grams
Finally, we will get the molarity as follows:
molarity = number of moles of solute / kg of solution
molarity = (0.467) / (1212.9594*10^-3)
molarity = 0.385 mole/kg
Hope this helps :)
Answer: electron donor.
Explanation:
According to Arrhenius concept, a base is defined as a substance which donates hydroxide ions
when dissolved in water and an acid is defined as a substance which donates hydronium ions
in water.
According to the Bronsted Lowry conjugate acid-base theory, an acid is defined as a substance which donates protons and a base is defined as a substance which accepts protons.
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs.

Here
acts as lewis base and
act as lewis acid.
Thus lewis base is defined as an electron pair donor.
Based on the melting points of both substances in comparison, my guess is Sodium chloride and glucose are the mystery compounds.This is further explained below.
<h3>What is
Sodium chloride?</h3>
Generally, Salt's chemical name is sodium chloride. It is an electrolyte's job to keep your body's fluid balance in check.
In conclusion, Sodium chloride and glucose are the likely candidates based on their relative melting points.
Read more about Sodium chloride
https://brainly.in/question/6246233
#SPJ1
9.184 liters CH2O at STP
I think this is correct. Good luck