Cl is stable as a diatomic molecule where the 2 Cl atoms are held together by a covalent bond
molar mass of the diatomic molecule is 70.9 g/mol
therefore 70.9 g of Cl₂ is - 1 mol
then 140 g of Cl₂ is - 1/70.9 x 140 = 1.97 mol
there are 1.97 mol of Cl₂ present
Answer:
179.87 g/mol
Explanation:
First you need to determine the number of each elements in the molecule. This information comes from the molecular formula.
Ze(NO3)2 tells us that there is 1 Ze atom and 2 NO3 anions per molecule. each NO3 anion will have 1 nitrogen and 3 oxygens. Due to that, one molecule of Ze(NO3)2 will have 1 atom of Ze, 2 atoms of nitrogen (N), and 6 atoms of oxygen (O).
Next you need to add all of the individual atom's molar masses to get the over all molar masses. The molar masses of each element is in the question but it can also be found on the periodic table.
molar mass of Ze(NO3)2 = 55.85g/mol + (14.01g/mol*2) + (16.00g/mol*6)
molar mass of Ze(NO3)2 = 179.87 g/mol
I hope this helps.
When water is boiled, the heat energy is transferred to the molecules of water, which begin to move more quickly. Eventually, the molecules have too much energy to stay connected as a liquid. When this occurs, they form gaseous molecules of water vapor, which float to the surface as bubbles and travel into the air.
Answer:
a. CH3NH2(aq) + H⁺ → CH3NH3⁺
Explanation:
The mixture of a weak base as CH3NH2 with its conjugate acid CH3NH3Cl produce a buffer. As the weak acid is in equilibrium with water, the mixture of the weak base and its conjugate base produce that the acid or base released react avoiding the change in pH.
For example, when a strong acid as HNO3 reacts, the weak base will react producing the conjugate base, that is:
CH3NH2(aq) + H⁺ → CH3NH3⁺
Right answer is:
<h3>a. CH3NH2(aq) + H⁺ → CH3NH3⁺</h3>