Explanation:
A) particles are close together in random positions with about equal kinetic energy and intermolecular forces.
These points are about liquid state.
B) particles are close together in fixed positions with low kinetic energy
These points satisfy the qualities of Solid state
C)particles are far apart with greater kinetic energy and low intermolecular forces.
The above qualities are for Gaseous state of matter
A) Liquid
B)Solid
C)Gas
Answer:
1.9 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 1.5 atm
- Initial volume (V₁): 3.0 L
- Initial temperature (T₁): 293 K
- Final pressure (P₂): 2.5 atm
- Final temperature (T₂): 303 K
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 1.5 atm × 3.0 L × 303 K / 293 K × 2.5 atm = 1.9 L
.ANSWER:Copper is a ductile metal
EXPLAIN :This means that it can easily be shaped into pipes and drawn into wires. Copper pipes are lightweight because they can have thin walls. They don't corrode and they can be bent to fit around corners.
Answer:
It's because removal of electron from an atom, reduces the size of an atom.
Explanation:
When an electron is removed from an atom, it becomes an ion and in this case it will become a postive ion.
When an electron is removed from an atom, the charge balance of an atom is disturbed and positive charge increases in comparison to the negative charge. This results in increase nuclear (positive) charge which exerts greater attraction on the remaining electrons and as a result the remaining electrons are more strongly attracted by the nucleus and in this way the atomic size is decreased. Due to this increased nuclear attraction and reduced atomic size, it bcomes difficult to remove more electeon from the positively charged ion of reduced size. This is the reason that each successive ionization of electron requires a greater amount of energy.
The ionization energy has inverse relation with the size or radius of an atom. This also justifies the reason that why each successive ionization of an electron requires greater amount of energy.