Answer:
the height (in feet) of the cliff is 121 ft
Explanation:
A stone hit the cliff with
speed, v = 88 ft/s
Acceleration, a= 32 ft/s^2
initial speed, u = 0 ft/s
height is h.
To solve this problem we will apply the linear motion kinematic equations, Equation of motion describes change in velocity, depending on the acceleration and the distance traveled
so, writing the formula of Equation of motion:
v^2 - u^2 = 2*a*h
substituting the appropriate values,
(88)^2 - 0 = 2*32* h
h=(88)^2 / 64
h= 121 ft
hence
the height (in feet) of the cliff is 121 ft
learn more about height of the cliff here:
<u>brainly.com/question/24130198</u>
<u />
#SPJ4
I'm pretty sure it's sunscreen
Answer:
a) see attached, a = g sin θ
b)
c) v = √(2gL (1-cos θ))
Explanation:
In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by
Wₓ = m a
W sin θ = m a
a = g sin θ
b) The diagram is the same, the only thing that changes is the angle that is less
θ' = 9/2 θ
c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.
The easiest way to find linear speed is to use conservation of energy
Highest point
Em₀ = mg h = mg L (1-cos tea)
Lowest point
Emf = K = ½ m v²
Em₀ = Emf
g L (1-cos θ) = v² / 2
v = √(2gL (1-cos θ))
Answer:
it is 100 degree which is boiling point in water