Answer:
3x10⁴v
Explanation:
Using
Wavelength= h/ √(2m.Ke)
880nm = 6.6E-34/√ 2.9.1E-31 x me
Ke= 6.6E-34/880nm x 18.2E -31.
5.6E-27/18.2E-31
= 3 x 10⁴ Volts
The best scenario to describe the doppler effect would be listening to the siren of a passing ambulance or fire truck
then it is coming towards you, the pitch is higher, it gets higher as it approaches and peaks as it gets right in front of you. then it drop at once when it passes you and continues to drop till it fades away. this is a classic descrption of the doppler effect
Speed is the rate at which something covers a distance; velocity is the same but it takes into account whether it goes forwards or backwards; and acceleration is the rate of an increase in speed.
Σf = m a
Σf = m v^2 / r
Σf = 52 8^2 / 1.6
Σf = 2080 N
Answer:
32.3 m/s
Explanation:
The ball follows a projectile motion, where:
- The horizontal motion is a uniform motion at costant speed
- The vertical motion is a free fall motion (constant acceleration)
We start by analyzing the horizontal motion. The ball travels horizontally at constant speed of
and it covers a distance of
d = 165 m
So, the total time of flight of the ball is
In order to find the vertical velocity of the ball, we have now to analyze its vertical motion.
The vertical motion is a free-fall motion, so the ball is falling at constant acceleration; therefore we can use the following suvat equation:
where
is the vertical velocity at time t
is the initial vertical velocity
is the acceleration of gravity (taking downward as positive direction)
Substituting t = 3.3 s (the time of flight), we find the final vertical velocity of the ball: