A 6.0 kg bowling ball moving at 3.5m/s to the right makes a collision, head-on, with a stationary 0.70 kg bowling pin. If the ba
ll is moving 2.77 m/s to the right after the collision, what will be the velocity ( magnitude and direction) of the pin?
1 answer:
Answer:
The velocity of the pin will be 6.26 m/s in the right direction.
Explanation:
Let's use the momentum conservation equation.
Initially, we have:
Where:
- m(b) is the ball mass
- v(ib) is the initial velocity of the ball
Now, the final momentum will be:
Where:
- m(p) is the pin mass
- v(fb) is the final velocity of the ball
- v(fp) is the final velocity of the pin
Then, using the equation of the conservation we have:
Therefore the velocity of the pin will be 6.26 m/s in the right direction.
I hope it helps you!
You might be interested in
Answer:
<h2>
3,343.68kJ </h2>
Explanation:
Heat energy used up can be calculated using the formula:
H = mcΔt
m = mass oof the object (in kg) = 20kg
c = specific heat capacity of water = 4179.6J/kg°C
Δt change in temperature = 80-40 = 40°C
H= 20* 4179.6 * 40
H = 3,343,680Joules
H = 3,343.68kJ
Answer:
Explanation:
Given that,
Radius, r = 2 m
Velocity, v = 1 m/s
We need to find the magnitude of the centripetal acceleration. The formula for the centripetal acceleration is given by :
So, the magnitude of centripetal acceleration is .
Ox:vₓ=v₀
x=v₀t
Oy:y=h-gt²/2
|vy|=gt
tgα=|vy|/vₓ=gt/v₀=>t=v₀tgα/g
y=0=>h=gt²/2=v₀²tg²α/2g=>tgα=√(2gh/v₀²)=√(2*10*20/24²)=√(400/576)=0.83=>α=tg⁻¹0.83=39°
cosα=vₓ/v=v₀/v=>v=v₀/cosα=24/cos39°=24/0,77=31.16 m/s
Ec=mv²/2=2*31.16²/2=971.47 J=>Ec≈0.97 kJ
I really think that the answer A
- The four inner plants have shorter orbits slower spin ,no rings ,and they are made up of rock and metal
- The outer plants are made up of hydrogen and helium, so they are called gas giants
Explanation:
hope it is the right answer