Answer:
Here are three examples
Explanation:
In a reversible reaction, the conversions of reactants to products and of products to reactants occur at the same time.
Example 1
The reaction of hydrogen and iodine to from hydrogen iodide.
H₂ + I₂ ⇌ 2HI
Example 2
The dissociation of carbonic acid in water to form hydronium and hydrogen carbonate ions
H₂CO₃ + H₂O ⇌ H₃O⁺ + HCO₃⁻
Example 3
The dissociation of dinitrogen tetroxide to nitrogen dioxide.
N₂O₄ ⇌ 2NO₂
X will be hydronium (H3O)
Answer:
50000ppm and 0.855M.
Explanation:
ppm is an unit of chemistry defined as the ratio between mg of solute (NaCl) and Liters of solution. Molarity, M, is the ratio between moles of NaCl and liters
A 5% (w/v) NaCl contains 5g of NaCl in 100mL of solution.
To solve the ppm of this solution we need to find the mg of NaCl and the L of solution:
<em>mg NaCl:</em>
5g * (1000mg / 1g) = 5000mg
<em>L Solution:</em>
100mL * (1L / 1000mL) = 0.100L
ppm:
5000mg / 0.100L = 50000ppm
To find molarity we need to obtain the moles of NaCl in 5g using its molar mass:
5g * (1mol / 58.5g) = 0.0855moles NaCl
Molarity:
0.0855mol NaCl / 0.100L = 0.855M
The pH = 2.41
<h3>Further explanation</h3>
Given
5.0% by mass solution of acetic acid
the density of white vinegar is 1.007 g/cm3
Required
pH
Solution
Molarity of solution :

Ka for acetic acid = 1.8 x 10⁻⁵
[H⁺] for weak acid :
![\tt [H^+]=\sqrt{Ka.M}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D)
Input the value :
![\tt [H^+]=\sqrt{1.8\times 10^{-5}\times 0.839}\\\\(H^+]=0.00388=3.88\times 10^{-3}\\\\pH=3-log~3.88=2.41](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.839%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D0.00388%3D3.88%5Ctimes%2010%5E%7B-3%7D%5C%5C%5C%5CpH%3D3-log~3.88%3D2.41)
Answer:
the ionic radius of the anion 
Explanation:
From the diagram shown below :
The anion
is located at the corners
The cation
is located at the body center
The Body diagonal length = 
∴ 
Given that :
(i.e the ratio of the ionic radius of the cation to the ionic radius of
the anion )

Also ; a = 664 pm
Then :

Therefore, the ionic radius of the anion 