Answer:
1.17 m
Explanation:
From the question,
s₁ = vt₁/2................ Equation 1
Where s₁ = distance of the reflecting object for the first echo, v = speed of the sound in air, t₁ = time to dectect the first echo.
Given: v = 343 m/s, t = 0.0115 s
Substitute into equation 1
s₁ = (343×0.0115)/2
s₁ = 1.97 m.
Similarly,
s₂ = vt₂/2.................. Equation 2
Where s₂ = distance of the reflecting object for the second echo, t₂ = Time taken to detect the second echo
Given: v = 343 m/s, t₂ = 0.0183 s
Substitute into equation 2
s₂ = (343×0.0183)/2
s₂ = 3.14 m
The distance moved by the reflecting object from s₁ to s₂ = s₂-s₁
s₂-s₁ = (3.14-1.97) m = 1.17 m
Matter either loses or absorbs energy when it changes from one state to another. For example, when matter changes from a liquid to a solid, it loses energy. The opposite happens when matter changes from a solid to a liquid. For a solid to change to a liquid, matter must absorb energy from its surroundings.
I think that this is false but I am not sure
As per Bernuolli's Theorem total energy per unit mass is given as

now from above equation




now by above equation


Part B)
Now energy per unit weight



Answer:
mb = 3.75 kg
Explanation:
System of forces in balance
ΣFx =0
ΣFy = 0
Forces acting on the box
T₁ : Tension in string 1 ,at angle of 50° with the horizontal on the left
T₂ = 40 N : Tension in string 2, at angle of 75° with the horizontal on the right.
Wb :Weightt of the box (vertical downward)
x-y T₁ and T₂ components
T₁x= T₁cos50°
T₁y= T₁sin50°
T₂x= 30*cos75° = 7.76 N
T₂y= 30*sin75° = 28.98 N
Calculation of the Wb
ΣFx = 0
T₂x-T₁x = 0
T₂x=T₁x
7.76 = T₁cos50°
T₁ = 7.76 /cos50° = 12.07 N
ΣFy = 0
T₂y+T₁y-Wb = 0
28.98 + 12.07(cos50°) = Wb
Wb = 36.74 N
Calculation of the mb ( mass of the box)
Wb = mb* g
g: acceleration due to gravity = 9.8 m/s²
mb = Wb/g
mb = 36.74 /9.8
mb = 3.75 kg