Answer: 17.68 s
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the ball when it hits the ground
is the initial height of the ball
is the initial velocity of the ball
is the time when the ball strikes the ground
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Rewritting (2):
(3)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(4)
Where:



Substituting the known values:
(5)
Solving (5) we find the positive result is:

1.7 Btu
1 watt = 3.41214 Btu/h
1watt * 1h = 3.41214 Btu/h * h
1 = 3.41214 Btu/ (watt*h)/
0.5 watt * h = 0.5 watt*h * 3.41214 Btu/(watt*h) = 1.706 Btu
well in my own words, i'd saw the the doppler effect is similar to light because sound has a speed, and light does too.
so my theory is if you go fast enough everything would just become black, or maybe white? idk its hard to explain
but what my point is, is taht the doppler effect works in the same way, like if a car is moving towards you the sound is being emitted from the car and being pushed by the speed of the car making it have a much higher pitch, when the car is going away however it drops to a lower pitch due the the sound waves being DRAGGED by the car.
there hoped this helped I guess
Answer:
ω = 630.2663 = 630[rad/s]
Explanation:
Solution:
- We can tackle this question by simple direct proportion relation between angular speed for the disk to rotate a cycle that constitutes 20 holes. We will use direct relation with number of holes per cycle to compute the revolution per seconds i.e frequency of speed f.
1rev(20 hole) -> 20(cycle)/rev
2006.2(cycle) -> f ?
f = 2006.2/20 = 100.31rev at second
- The relation between angular frequency and angular speed is given by:
ω = 2πf
ω = 2*3.14*100.31
ω = 630.2663 = 630[rad/s]