1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
3 years ago
8

Present the ways to observe interference patterns on thin films. Why the thickness of thin films should be in scale of wavelengt

h?
Physics
2 answers:
frez [133]3 years ago
6 0

the president of The proposal ahr stay Sheba SBR Abba and and I send svrvs you svrvs

antoniya [11.8K]3 years ago
5 0

Answer:

A colorful interference pattern is observed when light is reflected from the top and bottom boundaries of a thin oil film. The different bands form as the film's thickness diminishes from a central run-off-poin

Explanation:

<h3>hope it help brainliest pls</h3>
You might be interested in
50 points !! I need help asap.......Consider a 2-kg bowling ball sits on top of a building that is 40 meters tall. It falls to t
r-ruslan [8.4K]

1) At the top of the building, the ball has more potential energy

2) When the ball is halfway through the fall, the potential energy and the kinetic energy are equal

3) Before hitting the ground, the ball has more kinetic energy

4) The potential energy at the top of the building is 784 J

5) The potential energy halfway through the fall is 392 J

6) The kinetic energy halfway through the fall is 392 J

7) The kinetic energy just before hitting the ground is 784 J

Explanation:

1)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g is the acceleration of gravity

h is the height relative to the ground

While the kinetic energy is given by

KE=\frac{1}{2}mv^2

where v is the speed of the object

When the ball is sitting on the top of the building, we have

  • h=40 m, therefore the potential energy is not zero
  • v=0, since the ball is at rest, therefore the kinetic energy is zero

This means that the ball has more potential energy than kinetic energy.

2)

When the ball is halfway through the fall, the height is

h=20 m

So, half of its initial height. This also means that the potential energy is now half of the potential energy at the top (because potential energy is directly proportional to the height).

The total mechanical energy of the ball, which is conserved, is the sum of potential and kinetic energy:

E=PE+KE=const.

At the top of the building,

E=PE_{top}

While halfway through the fall,

PE_{half}=\frac{PE_{top}}{2}=\frac{E}{2}

And the mechanical energy is

E=PE_{half} + KE_{half} = \frac{PE_{top}}{2}+KE_{half}=\frac{E}{2}+KE_{half}

which means

KE_{half}=\frac{E}{2}

So, when the ball is halfway through the fall, the potential energy and the kinetic energy are equal, and they are both half of the total energy.

3)

Just before the ball hits the ground, the situation is the following:

  • The height of the ball relative to the ground is now zero: h=0. This means that the potential energy of the ball is zero: PE=0
  • The kinetic  energy, instead, is not zero: in fact, the ball has gained speed during the fall, so v\neq 0, and therefore the kinetic energy is not zero

Therefore, just before the ball hits the ground, it has more kinetic energy than potential energy.

4)

The potential energy of the ball as it sits on top of the building is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 40 m is the height of the building, where the ball is located

Substituting the values, we find the potential energy of the ball at the top of the building:

PE=(2)(9.8)(40)=784 J

5)

The potential energy of the ball as it is halfway through the fall is given by

PE=mgh

where:

m = 2 kg is the mass of the ball

g=9.8 m/s^2 is the acceleration of gravity

h = 20 m is the height of the ball relative to the ground

Substituting the values, we find the potential energy of the ball halfway through the fall:

PE=(2)(9.8)(20)=392 J

6)

The kinetic energy of the ball halfway through the fall is given by

KE=\frac{1}{2}mv^2

where

m = 2 kg is the mass of the ball

v = 19.8 m/s is the speed of the ball when it is halfway through the  fall

Substituting the values into the equation, we find the kinetic energy of the ball when it is halfway through the fall:

KE=\frac{1}{2}(2)(19.8)^2=392 J

We notice that halfway through the fall, half of the initial potential energy has converted into kinetic energy.

7)

The kinetic energy of the ball just before hitting the ground is given by

KE=\frac{1}{2}mv^2

where:

m = 2 kg is the mass of the ball

v = 28 m/s is the speed of the ball just before hitting the ground

Substituting the values into the equation, we find the kinetic energy of the ball just before hitting the ground:

KE=\frac{1}{2}(2)(28)^2=784 J

We notice that when the ball is about to hit the ground, all the potential energy has converted into kinetic energy.

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

4 0
3 years ago
Uma massa de 500 Kg desloca-se com velocidade 58 km por hora. Calcule o módulo de sua quantidade por movimento
Simora [160]

The momentum of the object is 8050 kg m/s

Explanation:

The momentum of an object is defined as

p=mv

where

p is the momentum

m is the mass

v is the velocity of the object

For the object in this problem, we have

m = 500 kg is its mass

v = 58 km/h is its velocity

Converting the velocity into m/s,

v=58 \frac{km}{h}\cdot \frac{1000 m/km}{3600 s/h}=16.1 m/s

Therefore now we can find the momentum of the object:

p=(500)(16.1)=8050 kg m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

7 0
3 years ago
A negatively charged particle is moving to the right, directly above a wire have a current flowing to the right. In which direct
Varvara68 [4.7K]

Answer:

C) upward

Explanation:

The problem can be solved by using the right-hand rule.

First of all, we notice at the location of the negatively charged particle (above the wire), the magnetic field produced by the wire points out of the page (because the current is to the right, so by using the right hand, putting the thumb to the right (as the current) and wrapping the other fingers around it, we see that the direction of the field above the wire is out of the page).

Now we can apply the right hand rule to the charged particle:

- index finger: velocity of the particle, to the right

- middle finger: direction of the magnetic field, out of the page

- thumb: direction of the force, downward --> however, the charge is negative, so we must reverse the direction --> upward

Therefore, the direction of  the magnetic force is upward.

3 0
3 years ago
You are trying to overhear a juicy conversation, but from your distance of 23.0 m , it sounds like only an average whisper of 40
Len [333]
If its asking the distance for the 65 db then use a proportion, if otherwise pleas clarify. It sounds like a pretty juicy conversation.
4 0
3 years ago
Select the correct answer.
r-ruslan [8.4K]

Answer:

That would be B. Hope this helps!

Explanation:

Orion's Belt or the Belt of Orion, also known as the Three Kings or Three Sisters, is an asterism in the constellation Orion. It consists of the three bright stars Alnitak, Alnilam and Mintaka. Looking for Orion's Belt in the night sky is the easiest way to locate Orion in the sky.

3 0
3 years ago
Read 2 more answers
Other questions:
  • While watching a movie a spaceship explodes and there is a loud bang and flash of light. What is wrong with this scene? Explain
    10·1 answer
  • Two football players with mass 75 kg and 100 kg run directly toward each other with speeds of 6 m/s and 8 m/s respectively. if t
    15·1 answer
  • All of the following statements about electromagnetic radiation are true except
    10·1 answer
  • Unpolarized light passes through two polarizers. Find the fraction of light from the first polarizer that gets through the secon
    15·2 answers
  • When a sound wave encounters a barrier, what happens?
    8·1 answer
  • What is the definition of bacteria ?
    7·2 answers
  • Formulating a Hypothesis: Part I Since the investigative question has two variables, you need to focus on each one separately. T
    6·2 answers
  • A wave is incident on the surface of a mirror at an angle of 41° with the normal. What can you say about its angle of reflection
    6·2 answers
  • (PLEASE HELP ILL GIVE OUT BRAINLIEST) Mr. Hicks stands on top of the roof and drops water ball oons at passing students. He miss
    15·2 answers
  • What will happen to the force between 2 charged objects if the mass of one of the charges is doubled and the distance between th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!