Answer:
The purpose of a filter paper inside a beaker is to retain the suspended solid particles found in the solution.
<em>The retention capacity of the filter paper will depend on the size of the pores of the filter</em>. Thus, for example, if the pores of the filter have a diameter of 1 mm, particles with a diameter greater than 1 mm will be retained, and the rest of the solution will pass through the pores.
The removal of impurities through filters is a physical separation process.
Answer: 0.5 mole Mg
Explanation: solution:
12 g Mg x 1 mole Mg / 24 g Mg
= 0.5 mole Mg
Answer:
Coefficients
Explanation:
Chemical equations are first written as a skeleton equation, which includes how many atoms each element and compound has. Skeleton equations are not 'balanced' because the number of atoms of each element on the left side (reactants) is not equal to the right side (products).
To balance a chemical equation, you can write coefficients in front of single elements and compounds. The coefficient multiplies with each single element and with each element in the compound.
For example, in this skeleton equation:
H₂ + Cl₂ => HCl
Reactants: Products:
2 hydrogen 1 hydrogen
2 chlorine 1 chlorine
Write the coefficient 2 in the products.
H₂ + Cl₂ => 2HCl
Now both reactant and product sides have 2 chlorine and 2 hydrogen, so the equation is balanced.
Answer:
c.boron-11
Explanation:
The atomic mass of boron is 10.81 u.
And 10.81 u is a lot closer to 11u than it is to 10u, so there must be more of boron-11.
To convince you fully, we can also do a simple calculation to find the exact proportion of boron-11 using the following formula:
(10u)(x)+(11u)(1−x)100%=10.81u
Where u is the unit for atomic mass and x is the proportion of boron-10 out of the total boron abundance which is 100%.
Solving for x we get:
11u−ux=10.81u
0.19u=ux
x=0.19
1−x=0.81
And thus the abundance of boron-11 is roughly 81%.