We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
Well it's an alkali metal if that's what you're asking<span />
Answer: Velocity
Explanation:
i just took the quiz for k12
Mass box C is 10+5. (So C is 15)
But if C was 30, how many times could you put B (5) into it?
30/5 = 6
You would need 6 boxes of B to make 30 grams of C.
Answer:
It is mentioned that the student is mixing chemicals A and B and observes the time taken for the color to change. However, in the experiment, it is noticed that the student has repeated the procedure five times and each time he or she is modifying the concentration of chemical B. Thus, it is clear that the concentration of chemical B is the independent variable in the experiment. An independent variable is illustrated as the variable, which is controlled or modified in the experiment.