F = m × g
Now when, a force acts on the object at an angle and in downwards, thus formula becomes:
= N = mg + F sin(x)
Here,
- N = normal force, m = mass , g = acceleration due to gravity, F = outside force, x = the angle formed
See, as we habe to calculate the weight, which is m × g, thus we will recreate thus formula like thus:
= N = w + F sin(x) --------- [Weight = w]
Now, the solutions becomes easy from here, just put the values:
= N = w + F sin(x)
= 200 = w + 90 × sin(32)
= 200 = w + 90 × 0.55
= 200 = w + 49.5
= 200 - 49.5 = w
= 150.5 = w
I have got my answer but in approx, hope you will not mind. ^^"
A) It would be doubled.
Why?
To answer the question, we just need to calculate the momentum of the basketball using the following formula:

Now, we have calculated the momentum and the result is 12 kg.m/s, what would happen to the velocity if we double the momentum? Let's calculate it!

Hence, we can see that if the momentum is doubled, the velocity will be doubled too.
Have a nice day!
Answer:
The spinal cord is information central in terms of the nerves involved with walking. The spinal nerves in and at the base of the spinal cord directly affect the walking motion.
Explanation:
The collision of the two waves would bring force and that would make the new wave smaller
Answer:
<em>The horizontal component of the velocity is 49.85 m/s.</em>
Explanation:
<u>Rectangular Components of a Vector</u>
A 2D vector can be expressed in several forms. The rectangular form gives its two components, one for each axis (x,y). The polar form gives the components as the pair (r,θ) being r the magnitude and θ the angle.
When the magnitude and angle of the vector are given, the rectangular components are calculated as follows:


Where v is the magnitude of the vector and θ is the angle with respect to the x positive direction.
The cart is moving at v=55 m/s at θ=25°, thus:


The horizontal component of the velocity is 49.85 m/s.