The resultant<span> is the vector sum of 2 or more vectors. It is the conclusion of adding 2 or more vectors together. If </span>displacement <span>vectors A, B, and C are added together, the result will be vector R.</span>
Mv + mv = 2mv providing each momentum is in the same direction.
1/2 mv^2 + 1/2 mv^2 = mv^2
Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
A) The answer is 11.53 m/s
The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi
Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²
Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h
So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² = 1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² = 1/2 vi² + a * h
We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m
1/2 vf² = 1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s
b) The answer is 6.78 m
The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE
Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²
Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h
KE = PE
1/2 m * v² = m * a * h
Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s²
h = ?
1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m