The right answer is D - mass.
Answer:
We'll have 1 mol Al2O3 and 3 moles H2
Explanation:
Step 1: data given
Numer of moles of aluminium = 2 moles
Number of moles of H2O = 6 moles
Step 2: The balanced equation
2Al + 3H2O → Al2O3 + 3H2
Step 3: Calculate the limiting reactant
For 2 moles Al we need 3 moles H2O to produce 1 mol Al2O3 and 3 moles H2
Aluminium is the limiting reactant. It will completely be consumed (2 moles).
H2O is in excess. There will react 3/2 * 2 = 3 moles
There will remain 6 - 3 = 3 moles
Step 4: Calculate moles products
For 2 moles Al we need 3 moles H2O to produce 1 mol Al2O3 and 3 moles H2
For 2 moles Al we'll have 2/1 = 1 mol Al2O3
For 2 moles Al We'll have 3/2 * 2 = 3 moles H2
We'll have 1 mol Al2O3 and 3 moles H2
I think it would be these three answers ionic , covalent , and polar covalent
1.05moles
Explanation:
Given parameters:
Number of molecules of C₂H₆ = 6.29 x 10²³molecules
Unknown:
Number of moles = ?
Solution:
The mole is the amount of substances that contains Avogadro's number of particles i.e 6.02 x 10²³
To find the number of moles:
number of moles = 
number of moles = 
number of moles = 1.05moles
Learn more:
moles brainly.com/question/1841136
#learnwithBrainly
The enthalpy of reaction for the combustion of ethane 2CH₃CH₃ + 7O₂ → 4CO₂ + 6H₂O calculated from the average bond energies of the compounds is -2860 kJ/mol.
The reaction is:
2CH₃CH₃ + 7O₂ → 4CO₂ + 6H₂O (1)
The enthalpy of reaction (1) is given by:
(2)
Where:
r: is for reactants
p: is for products
The bonds of the compounds of reaction (1) are:
- 2CH₃CH₃: 2 moles of 6 C-H bonds + 2 moles of 1 C-C bond
- 7O₂: 7 moles of 1 O=O bond
- 4CO₂: 4 moles of 2 C=O bonds
- 6H₂O: 6 moles of 2 H-O bonds
Hence, the enthalpy of reaction (1) is (eq 2):

Therefore, the enthalpy of reaction for the combustion of ethane is -2860 kJ/mol.
Read more here:
brainly.com/question/11753370?referrer=searchResults
I hope it helps you!