A force of attraction that
holds atom together
When atoms react they form a
chemical bond which is defined as a force of attraction that holds atom
together. A force of attraction is defined as a kind of force that draws two or
more objects together regardless of distance. There are two major categories of
forces of attraction, one is intramolecular and intermolecular. Intramolecular forces
is the presence of forces in atoms internally. While intermolecular is the
force by which the force that is existent in two or more elements.
Answer: The density of 0.50 grams of gaseous carbon stored under 1.50 atm of pressure at a temperature of -20.0 °C is 0.867 g/L.
Explanation:
- d = m/V, where d is the density, m is the mass and V is the volume.
- We have the mass m = 0.50 g, so we must get the volume V.
- To get the volume of a gas, we apply the general gas law PV = nRT
P is the pressure in atm (P = 1.5 atm)
V is the volume in L (V = ??? L)
n is the number of moles in mole, n = m/Atomic mass, n = 0.50/12.0 = 0.416 mole.
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature in K (T(K) = T(°C) + 273 = -20.0 + 273 = 253 K).
- Then, V = nRT/P = (0.416 mol)(0.082 L.atm/mol.K)(253 K) / (1.5 atm) = 0.576 L.
- Now, we can obtain the density; d = m/V = (0.50 g) / (0.576 L) = 0.867 g/L.
Answer:
CH3CH2CH2CH2CH2OH.
Explanation:
Hello.
In this case, since the vapor pressure is known to be the pressure exerted by the gaseous molecules in equilibrium with a liquid, we can infer that the higher the molecule, the lower the vapor pressure because the molecules tend to be help together more strongly and more energy is required to separate them and take them from liquid to gas.
In such a way, since CH3CH2CH2CH2CH2OH is the longest molecule (five carbon atoms) it would be more stable at liquid phase which means that it has less molecules moving to gaseous phase, which is also related with the lowest vapor pressure. Conversely, CH3CH2OH has the highest vapor pressure.
Best regards.
0.0788 will be the number of moles of silver in coin.
<h3><u>How to find the number of moles?</u></h3>
A mole is the mass of a material made up of the same number of fundamental components. Atoms in a 12 gram example are identical to 12C. Depending on the material, the fundamental units may be molecules, atoms, or formula units.
A mole fraction shows how many chemical elements are present. The value of 6.023 x 10²³ is equivalent to one mole of any material (Avagadro's number). It can be used to quantify the chemical reaction's byproducts. The symbol for the unit is mol.
The number of moles formula is denoted by the following expression:
Number of moles = Mass of substance/mass of one mole
To view more about number of moles, refer to:
brainly.com/question/14080043
#SPJ4