Answer:
See explaination
Explanation:
The Cys3-cys97 and cys21-cys142 disulfides restrict the unfolded state of lysozyme enzyme to a class of more compact structures with a less exposed hydrophobic surface, compared to the unfolded states of reduced/non-crosslinked lysozyme. there are 2 major factors which lead to the stabilization of lysozyme due to disulfide bonds-
1- increase in the loop size due to the formation of disulfide bonds that leads to an increase in the even entropic effect.
2- the region formed should be flexible. the strain energy due to the formation of the disulfide bond is lower.
cys21-cys142 has a higher Tm than the cys3-cys97 because it involves flexible parts of the molecule. 21 and 142 residues are located on opposite sides of the active-site cleft where significant hinge-bending motion is seen. this introduces minimal strain in the protein.
• Before the balloon was placed inside the hot water, the pressure was the same inside and outside the balloon. The hot water raised the kinetic energy of the air molecules inside the balloon, expanding the balloon, through thermal expansion.
• (1) the pressure of air inside the balloon increased, (2) the volume of the inside of the balloon increased as well, and (3) the temperature of the balloon increased. Note that pressure and volume are inversely proportional, and pressure and temperature are directly proportional. Therefore as the temperature increases, the pressure inside will increase, causing an increase in the volume. At a certain point though the volume will increase too much as to cause a significant decrease in pressure.
• The air molecules will gain kinetic energy, hence (1) increasing the molecules's speed, and (2) heating the air molecules.
Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
Physical because it is still H2O
You need to have more information, please list the
"following".
Thanks