Answer:Counter,
0.799,
1.921
Explanation:
Given data
Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger
Equating Heat exchange
=
we can see that heat capacity of hot fluid is minimum
Also from energy balance
=
NTU=1.921
Answer:
Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.
Explanation:
Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow. You can also see that represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:
- Wall Thickness. More thickness, more thermal resistance.
- Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
- Cross-section Area. More cross-section area, less thermal resistance.
A expression to define the thermal resistance for the wall is as follows: , where l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.
engineering approach their work by finding new solutions to their problems. like if two things dont go together in an invention, they will find another way
Answer:
5.118 m^3/hr
Explanation:
Given data:
viscosity of cell broth = 5cP
cake resistance = 1*1011 cm/g
dry basis per volume of filtrate = 20 g/liter
Diameter = 8m , Length = 12m
vacuum pressure = 80 kpa
cake formation time = 20 s
cycle time = 60 s
<u>Determine the filtration rate in volumes/hr expected fir the rotary vacuum filter</u>
attached below is a detailed solution of the question
Hence The filtration rate in volumes/hr expected for the rotary vacuum filter
V' = ( ) * 1706.0670
= 5118.201 liters ≈ 5.118 m^3/hr