Answer:
232.9m³ (Option b. is the closest answer)
Explanation:
Given:
Air pressure in the lab before the storm, P₁ = 1.1atm
Air volume in the lab before the storm, V₁ = 180m³
Air pressure in the lab during the storm P₂ = 0.85atm
Air volume in the lab before the storm, V₂ = ?
Applying Boyle's law: P₁V₁ = P₂V₂ (at constant temperature)



V₂ = 232.9m³
The air volume in the laboratory that would expand in order to make up for the large pressure difference outside is 232.9m³
ok
1. blue red pink black
2. you can say bored look
3. why do you want to talk in brainly?
Answer:
Since the waves must carry a great deal of visual as well as audio information, each channel requires a larger range of frequencies than simple radio transmission. TV channels utilize frequencies in the range of 54 to 88 MHz and 174 to 222 MHz. (The entire FM radio band lies between channels 88 MHz and 174 MHz.)