Answer:
Explanation:
graph would be a straight line from (0, 0) to (400, 8)
Plot points are
PE = mgh
50(0) = 0 J
50(2) = 100 J
50(4) = 200 J
50(6) = 300 J
50(8) = 400 J
Answer:
Work done in both the cases will be same
Explanation:
As we know that the work done against gravity is given as

here we know that gravitational force is a conservative force and the work done against gravitational force is independent of the path
So here the work done by person to move the object between two different heights will be independent of the path they choose
So for the first person and second person will be same in both the cases because the height through which the boxes are transferred will be same in both the cases
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>