Answer:
So the mass of the second object M will be 1.951 kg
Explanation:
We have given mass of the first object
and its velocity 
Mass of the second object
it is at rest so its velocity 
From conservation of momentum we know that
Initial momentum = final momentum
So 


M = 1.951 kg
Answer:
θ = 66.90°
Explanation:
we know that

I= intensity of polarized light =1
I_o= intensity of unpolarized light = 13
putting vales we get

⇒
therefore θ = 66.90°
Answer:
1.) 4m
2.) 37 m
3.) 62m
4.) 2.5 s
Explanation:
1.) Given that the
Thinking distance = 1m
Breaking distance = 3m
Stopping distance = breaking distance + thinking distance
Stopping distance = 1 + 3 = 4m
2.) Given that the
Stopping distance = 52 m
Thinking distance = 15m
Breaking distance = 52 - 15 = 37m
3.) The stopping distance = 76m
Thinking distance = 14m
Breaking distance = 76 - 14 = 62m
It take the brakes 62m to slow the car down to a stop.
4.) Given that a lorry travels 28m when stopping from a speed of 4m/s. If its braking distance was 18m, what was the driver’s reaction time?
Thinking = stopping distance - braking distance
Thinking distance = 28 - 18 = 10m
Speed = distance/time
4 = 10/reaction time
Reaction time = 10/4
Reaction time = 2.5 s
5.) Question incomplete
Answer:
Explanation:
Given:
P = 6.35 atm
= 1.01 × 10^5 × 6.35
= 6.434 × 10^5 N/m^2
As = 975 cm^2
D = 3.8 g/cm^2
M = 320 kg
Since the propellant volume is equal to the cross sectional area, As times the fuel length, the volumetric propellant consumption rate is the cross section area times the linear burn rate, bs , and the instantaneous mass flow rate of combustion, ms gases generated is equal to the volumetric rate times the fuel density, D
ms = D × As × bs
ms ÷ bs = M/L
M/L = 3.8 × 975
= 3705 g/cm
= 3.705 × 10^6 kg/m^3
Pressure = mass × g/area
= mass/length × time^2
t = sqrt(3.705 × 10^6/6.43 × 10^5)
= 2.4 s
The net force on the sled is 300 N
Explanation:
First of all, we start by finding the acceleration of the bobsled, by using the suvat equation:

where:
v = 6.0 m/s is the final velocity of the sled
u = 0 is the initial velocity
a is the acceleration
s = 4.5 m is the displacement of the sled
Solving for a, we find

Now we can find the net force on the sled by using Newton's second law:
F = ma
where
F is the net force
m = 75 kg is the mass of the sled
is the acceleration
Solving the equation, we find the net force:

Learn more about acceleration and Newton laws here:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly