<span>The law of conservation of matter and energy relates to the cycles in nature, and by that it is also applied to rocks and other materials. All of the rock in the Earth is recycled and accounted for during the rock cycle. Rocks experience physical change, the composition of the material stays the same, it may just change how it looks and chemical changes occur (the suubstance undergoes a chemical reaction that changes the actual makeup of the substance).</span>
Answer:
Water can spread germs through bacteria.
Explanation:
Bacteria can live in water and can spread to new locations when water is moved.
Answer:
a) dangers faced during natural circumstances
Explanation:
Minimum of aerobic activity 150 minutes, or a mix of moderates and intensive exercise 75 minutes of vigorous aerobic activity a week. We can extend this practice throughout the week with the instructions. Mild aerobic workouts might include practices like quick strolling or swimming, while activity like running can include strong aerobic activity.
Given the particle's acceleration is
![\vec a(t) = \left(3\dfrac{\rm m}{\mathrm s^2}\right)\vec\jmath](https://tex.z-dn.net/?f=%5Cvec%20a%28t%29%20%3D%20%5Cleft%283%5Cdfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29%5Cvec%5Cjmath)
with initial velocity
![\vec v(0) = \left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath](https://tex.z-dn.net/?f=%5Cvec%20v%280%29%20%3D%20%5Cleft%285%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5C%2C%5Cvec%5Cimath)
and starting at the origin, so that
![\vec r(0) = \vec 0](https://tex.z-dn.net/?f=%5Cvec%20r%280%29%20%3D%20%5Cvec%200)
you can compute the velocity and position functions by applying the fundamental theorem of calculus:
![\vec v(t) = \vec v(0) + \displaystyle \int_0^t \vec a(u)\,\mathrm du](https://tex.z-dn.net/?f=%5Cvec%20v%28t%29%20%3D%20%5Cvec%20v%280%29%20%2B%20%5Cdisplaystyle%20%5Cint_0%5Et%20%5Cvec%20a%28u%29%5C%2C%5Cmathrm%20du)
![\vec r(t) = \vec r(0) + \displaystyle \int_0^t \vec v(u)\,\mathrm du](https://tex.z-dn.net/?f=%5Cvec%20r%28t%29%20%3D%20%5Cvec%20r%280%29%20%2B%20%5Cdisplaystyle%20%5Cint_0%5Et%20%5Cvec%20v%28u%29%5C%2C%5Cmathrm%20du)
We have
• velocity at time <em>t</em> :
![\vec v(t) = \left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath + \displaystyle \int_0^t \left(3\dfrac{\rm m}{\mathrm s^2}\right)\,\vec\jmath\,\mathrm du \\\\ \vec v(t) = \left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath + \left(3\dfrac{\rm m}{\mathrm s^2}\right)t\,\vec\jmath \\\\ \boxed{\vec v(t) = \left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath + \left(3\dfrac{\rm m}{\mathrm s^2}\right)t\,\vec\jmath}](https://tex.z-dn.net/?f=%5Cvec%20v%28t%29%20%3D%20%5Cleft%285%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5C%2C%5Cvec%5Cimath%20%2B%20%5Cdisplaystyle%20%5Cint_0%5Et%20%5Cleft%283%5Cdfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29%5C%2C%5Cvec%5Cjmath%5C%2C%5Cmathrm%20du%20%5C%5C%5C%5C%20%5Cvec%20v%28t%29%20%3D%20%5Cleft%285%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5C%2C%5Cvec%5Cimath%20%2B%20%5Cleft%283%5Cdfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5C%2C%5Cvec%5Cjmath%20%5C%5C%5C%5C%20%5Cboxed%7B%5Cvec%20v%28t%29%20%3D%20%5Cleft%285%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5C%2C%5Cvec%5Cimath%20%2B%20%5Cleft%283%5Cdfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5C%2C%5Cvec%5Cjmath%7D)
• position at time <em>t</em> :
![\vec r(t) = \displaystyle \int_0^t \left(\left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath + \left(3\dfrac{\rm m}{\mathrm s^2}\right)u\,\vec\jmath\right) \,\mathrm du \\\\ \boxed{\vec r(t) = \left(5\dfrac{\rm m}{\rm s}\right)t\,\vec\imath + \frac12 \left(3\frac{\rm m}{\mathrm s^2}\right)t^2\,\vec\jmath}](https://tex.z-dn.net/?f=%5Cvec%20r%28t%29%20%3D%20%5Cdisplaystyle%20%5Cint_0%5Et%20%5Cleft%28%5Cleft%285%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29%5C%2C%5Cvec%5Cimath%20%2B%20%5Cleft%283%5Cdfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29u%5C%2C%5Cvec%5Cjmath%5Cright%29%20%5C%2C%5Cmathrm%20du%20%5C%5C%5C%5C%20%5Cboxed%7B%5Cvec%20r%28t%29%20%3D%20%5Cleft%285%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29t%5C%2C%5Cvec%5Cimath%20%2B%20%5Cfrac12%20%5Cleft%283%5Cfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5E2%5C%2C%5Cvec%5Cjmath%7D)