Time taken = 3 hours
<h3>Further explanation</h3>
Given
speed : 75 mph
distance : 225 miles
Required
time taken
Solution
An equation of constant velocity motion

d = distance = m
v = speed = m / s
t = time = seconds
Input the value :
t = d : v
t = 225 miles : 75 miles/hour
t = 3 hours
kilograms are the unit that measures mass
2.38×10^-3
Explanation:
from the question,the we calculate the latent heat of vaporization with the difference in temperature being put into consideration
pH of 0.40M triethylammonium chloride is 5.90.
<h3>What is pH?</h3>
A solution's acidity may be determined by looking at its pH, which is a measurement of hydrogen ion concentration. Pure water slightly separates into ions with roughly equal amounts of hydrogen and hydroxyl (OH) ions. [H+] is 107 for a neutral solution, or pH = 7.
<h3>Given : </h3>
Concentration of triethylammonium chloride = 0.40M
pH = ?
<h3>Solution: </h3>
(CH3CH2)3NHCl ------> (CH3CH2)3NH⁺ + Cl⁻
(CH3CH2)3NH⁺ will react with water to give H3O⁺ .
(CH3CH2)3N will have a Kb = 5.2 x 10 ^(-4)
Kw = Kb x Ka
=> Ka = Kw / Kb = 10^(-14) / 5.2 x 10 ^(-4)
=> Ka = 1.92 x 10^(-11)
so by the reaction we have ,
Ka = x²/(0.40 - x)
=> x = 1.2393 x 10 ^(-6)
now, pH = -log( [H3O⁺]) = - log ( 1.2393 x 10 ^(-6)) = 5.906
To learn more about pH :
brainly.com/question/15289741
#SPJ4
Answer:
43.5 moles of HNO₃.
Explanation:
The balanced equation for the reaction is given below:
S + 6HNO₃ —> H₂SO₄ + 6NO₂ + 2H₂O
From the balanced equation above,
6 moles of HNO₃ reacted to produce 2 moles of H₂O.
Finally, we shall determine the number of mole of HNO₃ required to produce 14.5 moles of H₂O.
This can be obtained as illustrated below:
From the balanced equation above,
6 moles of HNO₃ reacted to produce 2 moles of H₂O.
Therefore, Xmol of HNO₃ will react to produce 14.5 moles of H₂O i.e
Xmol of HNO₃ = (6 × 14.5)/2
Xmol of HNO₃ = 43.5 moles
Therefore, 43.5 moles of HNO₃ is required to produce 14.5 moles of H₂O.