Answer:
The new equilibrium total pressure will be increased to one-half to initial total pressure.
Explanation:
From the information given :
The equation of the reaction can be represented as;

From above equation:
2 moles of sulphur dioxide reacts with 1 mole of oxygen (i.e 2 moles +1 mole =3 moles ) to give 2 moles of sulphur trioxide
So; suppose the volume of this system is compressed to one-half its initial volume and then equilibrium is reestablished.
So if this process takes place ; the equilibrium will definitely shift to the side with fewer moles , thus the equilibrium will shift to the right. As such; there is increase in pressure.
Let the total pressure at the initial equilibrium be 
and the total pressure at the final equilibrium be 
According to Boyle's Law; Boyle's Law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Thus;
P ∝ 1/V
P = K/V
PV = K
where K = constant
So;
PV = constant
Hence;

From the foregoing; since the volume is decreased to one- half to initial Volume; then ,

also;
Thus ;



Dividing both sides by 


From ;




Thus; The new equilibrium total pressure will be increased to one-half to initial total pressure.
Solute particles can be atoms, ions or molecules.
Explanation:
Solute is the material which has to be mixed in the solvent to prepare a solution. So the concentration of solute should be less than the solvent. Also the solute and solvent should be of same nature other they will not dissolve with each other. The solute can be made up of atoms, ions or molecules depending upon the solvent. If the solvent concentration is in moles, then the solute concentration can be taken as atoms, ions or molecules. Also the saturation point plays a main role in deciding the kind of particles taken for the solute.
Answer:
of 0.056 M HF solution is 
Explanation:
cM 0 0
So dissociation constant will be:
Give c= 0.056 M and
= ?
Putting in the values we get:
Thus
of 0.056 M HF solution is 
Answer: The amount of water produced is 9.3 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

mass of reactants = mass of methane + mass of oxygen = 22.5 g + 35.7 g = 58.2 g
mass of products = mass of carbon dioxide + mass of water = 48.9 g + mass of water
48.9 g + mass of water = 58.2 g
mass of water = 9.3 g
Methane, CH4, would have the lowest boiling point among the three since it has the lowest number of carbon and has no functional groups. Methanol would have the highest boiling point since it has a functional group which contains hydrogen bonding which much stronger than the one in CH3Cl. Hope this helps.<span />